【题目】已知点P是椭圆 在第一象限上的动点,过点P引圆x2+y2=4的两条切线PA、PB,切点分别是A、B,直线AB与x轴、y轴分别交于点M、N,则△OMN面积的最小值为 .
【答案】
【解析】解:根据题意,设A(x1 , y1),B(x2 , y2),P(x0 , y0), PA是圆的切线且切点为A,则PA的方程为x1x+y1y=4,
同理PB的方程为x2x+y2y=4,
又由PA、PB交与点P,则有x1x0+y1y0=4,x2x0+y2y0=4,
则直线AB的方程为x0x+y0y=4,
则M的坐标为( ,0),N的坐标为(0, ),
S△OMN= |OM||ON|= ,
又由点P是椭圆 在第一象限上的动点,则有 + =1,
则有1= + ≥2 = |x0y0|,即|x0y0|≤4 ,
S△OMN= |OM||ON||= ≥ ,
即△OMN面积的最小值为 ;
所以答案是: .
科目:高中数学 来源: 题型:
【题目】已知直线m∥平面α,则下列命题中正确的是( )
A.α内所有直线都与直线m异面
B.α内所有直线都与直线m平行
C.α内有且只有一条直线与直线m平行
D.α内有无数条直线与直线m垂直
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)f(a﹣x)=1对任意实数x∈R恒成立,则称f(x)为关于a的“倒函数”.已知定义在R上的函数f(x)是关于0和1的“倒函数”,且当x∈[0,1]时,f(x)的取值范围为[1,2],则当x∈[1,2]时,f(x)的取值范围为 , 当x∈[﹣2016,2016]时,f(x)的取值范围为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,关于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四个相异的实数根,则a的取值范围是( )
A.(﹣1, )
B.(1,+∞)
C.( ,2)
D.( ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数). (Ⅰ)若a=1,求函数y=f(x)g(x)在区间[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,关于x的方程f(x)=kg(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2, .
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求二面角A﹣EC﹣B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com