精英家教网 > 高中数学 > 题目详情
命题p:若<0,则的夹角为钝角;命题q:定义域为R的函数,在(-∞,0)与(0,+∞)上都是增函数,则在(-∞,+∞)上是增函数.则下列说法正确的是( )
A.“p且q”是假命题
B.“p且q”是真命题
C.p为假命题
D.非q为假命题
【答案】分析:根据向量数量积与夹角的关系及函数单调性的定义,我们及判断出命题p与命题q的真假,进而根据复数命题的真值表,我们对四个答案逐一进行分析,即可得到答案.
解答:解:时,向量 可能反向
故命题p:若 ,则 的夹角为钝角为假命题
若定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,
f(x)在(-∞,+∞)上的单调性无法确定
故命题q:定义域为R的函数f(x)在(-∞,0)及(0,+∞)上都是增函数,则f(x)在(-∞,+∞)上是增函数也为假命题
故“p且q”是假命题,故B错误;
“p且q”是假命题,故A正确;
p为假命题、¬q均为真命题,故C、D不正确;
故选A.
点评:本题考查的知识点是复合命题的真假,函数单调性的判断与证明,数量积表示两个向量的夹角,其中判断出命题p与命题q的真假,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题p:若a>0,则方程x2+x-a=0有实根.命题p的逆命题是
 
;其真假为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:若m>0,则关于x的方程x2+x-m=0有实根.q是p的逆命题,下面结论正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题P:“若x+y=0,则x,y互为相反数”命题P的否命题为Q,命题Q的逆命题为R,则R是P的逆命题的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:若m<0,则关于x的方程x2+x+m=0(m∈R)有实根.
(1)写出命题P的逆命题、否命题、逆否命题;
(2)判断命题P及其逆命题、否命题、逆否命题的真假(直接写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•太原模拟)已知命题p:若x2+y2=0,则x、y全为0;命题q:?x∈R,使sinx+cosx=
3
2
.则下列命题是真命题的是(  )

查看答案和解析>>

同步练习册答案