精英家教网 > 高中数学 > 题目详情
如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0
A
因为直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点
M为线段PB的中点.则①;成立②;成立
③点A到平面PBC距离就是△PAC的PC边上的高.成立④二面角P-BC-A大小不可能为450,不成立
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,四棱锥的底面为矩形,且


(Ⅰ)平面与平面是否垂直?并说明理由;
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图:四棱锥PABCD中,底面ABCD是矩形,PA⊥底面ABCDPA=AB=1,AD=,点FPB的中点,点E在边BC上移动.

(Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF;
(Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,空间中两个有一条公共边AD的正方形ABCD和ADEF.设M、N分别是BD和AE的中点,那么        

①AD⊥MN;②MN∥平面CDE;③MN∥CE;④MN、CE异面
以上4个命题中正确的是  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面∥平面外一点,过点的直线分别交于,过点的直线分别交于,则的长为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,使成立的一个充分条件是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案