精英家教网 > 高中数学 > 题目详情

已知θ满足数学公式,则函数f(θ)=2sinθ+3cosθ的最大值为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:先设x=sinθ,y=cosθ,将题目转化成约束条件为,目标函数为z=2x+3y的最大值问题,再根据约束条件画出可行域,设z=2x+3y,再利用z的几何意义求最值,只需求出直线z=2x+3y过可行域内的点A时,从而得到z=2x+3y的最大值即可.
解答:解:设x=sinθ,y=cosθ
则约束条件为,目标函数为f(θ)=2x+3y
先根据约束条件画出可行域,
设z=2x+3y,将z的值转化为直线z=2x+3y在y轴上的截距,
当直线z=2x+3y经过点A()时,z最大,
最大值为:
故选A.
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(1)求实数m的值;
(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
.试用这个结论证明:若-1<x1<x2,函数g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1)
,则对任意x∈(x1,x2),都有f(x)>g(x);
(3)已知正数λ1,λ2,…,λn,满足λ12+…+λn=1,求证:当n≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,…,xn,都有f(λ1x12x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x≠0,函数f(x)满足f(x-
1
x
)=x2+
1
x2
,则f(x)的表达式为(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省郑州市高三第十四次调考理科数学试卷(解析版) 题型:填空题

已知实数a,b满足,则函数f(x)= 的两个极值点都在(0,1)内的概率为______

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州市荔湾区广雅中学高三(上)12月月考数学试卷(理科)(解析版) 题型:选择题

已知θ满足,则函数f(θ)=2sinθ+3cosθ的最大值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案