精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$.
(1)判断并用定义证明函数f(x)的单调性;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下,解不等式:f(log${\;}_{\frac{1}{3}}$x)+f(1)>0.

分析 (1)根据指数函数的单调性可看出x增大时,f(x)增大,从而判断出f(x)在R上单调递增,根据增函数的定义,设任意的x1,x2∈R,且x1<x2,然后作差,通分,证明f(x1)<f(x2)便可得出f(x)在R上单调递增;
(2)根据f(x)为奇函数,f(x)又在原点有定义,从而有f(0)=0,这样即可得出a的值;
(3)该问是在(2)的条件下,从而知道f(x)为奇函数,且在R上单调递增,从而可由原不等式得到$lo{g}_{\frac{1}{3}}x>-1$,这样解该不等式即可得出原不等式的解集.

解答 解:(1)函数f(x)的定义域为R;
x增大时,2x增大,$-\frac{2}{{2}^{x}+1}$增大,f(x)增大,∴f(x)在R上单调递增,证明如下:
设x1,x2∈R,且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{2}{{2}^{{x}_{2}}+1}-\frac{2}{{2}^{{x}_{1}}+1}$=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2
∴${2}^{{x}_{1}}<{2}^{{x}_{2}},{2}^{{x}_{1}}-{2}^{{x}_{2}}<0$;
又${2}^{{x}_{1}}+1>0,{2}^{{x}_{2}}+1>0$;
∴f(x1)<f(x2);
∴f(x)在R上单调递增;
(2)f(x)在R上为奇函数;
∴$f(0)=a-\frac{2}{{2}^{0}+1}=a-1=0$;
∴a=1;
(3)由上面知f(x)为奇函数,且在R上单调递增;
∴由$f(lo{g}_{\frac{1}{3}}x)+f(1)>0$得,$f(lo{g}_{\frac{1}{3}}x)>f(-1)$;
∴$lo{g}_{\frac{1}{3}}x>-1$;
即$lo{g}_{\frac{1}{3}}x>lo{g}_{\frac{1}{3}}3$;
∴0<x<3;
∴原不等式的解集为:(0,3).

点评 考查增函数的定义,以及根据增函数的定义判断并证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后,是分式的一般要通分,以及指数函数、对数函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.三个数0.993.3,log3π,log20.8的大小关系为(  )
A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3
C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$满足对任意的实数x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0成立,则实数a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{5}$,$\frac{1}{2}$)D.[$\frac{1}{5}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=tan(2x+φ)的图象的一个对称中心为($\frac{π}{2}$,0),则φ={α|α=($\frac{1}{2}$k-1)π,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,则(  )
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数y=2sin(2x+$\frac{π}{3}$).
(1)求函数的周期;
(2)当x∈[-$\frac{π}{6}$,$\frac{π}{2}$],求函数的值域.
(3)当x∈R时,求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=tan$(2x-\frac{π}{6})$+3图象的对称中心坐标为($\frac{kπ}{4}$-$\frac{π}{12}$,3),k∈Z,单调递增区间为($\frac{kπ}{2}$-$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{π}{3}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα•cosα=$\frac{1}{4}$,且α是第三象限角,求sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设集合M={x|x2+2mx+3m+4<0},N={x|y=log2(5-4x-x2)};已知M∩N=M,求实数m的取值范围.

查看答案和解析>>

同步练习册答案