精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,与双曲线x2-y2=1的渐近线有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(  )
A.
x2
8
+
y2
2
=1
B.
x2
12
+
y2
6
=1
C.
x2
16
+
y2
4
=1
D.
x2
20
+
y2
5
=1
由题意,双曲线x2-y2=1的渐近线方程为y=±x
∵以这四个交点为顶点的四边形的面积为16,故边长为4,
∴(2,2)在椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上
4
a2
+
4
b2
=1

e=
3
2

a2-b2
a2
=
3
4

∴a2=4b2
∴a2=20,b2=5
∴椭圆方程为:
x2
20
+
y2
5
=1
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于2
2
,求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,椭圆C的上、下顶点分别为A1,A2,左、右顶点分别为B1,B2,左、右焦点分别为F1,F2.原点到直线A2B2的距离为
2
5
5

(1)求椭圆C的方程;
(2)过原点且斜率为
1
2
的直线l,与椭圆交于E,F点,试判断∠EF2F是锐角、直角还是钝角,并写出理由;
(3)P是椭圆上异于A1,A2的任一点,直线PA1,PA2,分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=
8
6
11

(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

以抛物线y2=4x的焦点为右焦点的椭圆,上顶点为B2,右顶点为A2,左、右焦点为F1、F2,且|
F1B2
|cos∠B2F1F2=
3
3
|
OB2
|,过点D(0,2)的直线l,斜率为k(k>0),l与椭圆交于M,N两点.
(1)求椭圆的标准方程;
(2)若M,N的中点为H,且
OH
A2B2
,求出斜率k的值;
(3)在x轴上是否存在点Q(m,0),使得以QM,QN为邻边的四边形是个菱形?如果存在,求出m的范围;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点P到左右两焦点F1,F2的距离之和为2
2
,离心率为
2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点,若y轴上一点M(0,
3
7
)
满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
2
+y2=1
的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1x2+y2=
4
5
,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1两点,c是椭圆C2的半焦距,c=
3
b

(1)求m的值;
(2)O为坐标原点,若
OA1
OB1
,求椭圆C2的方程;
(3)在(2)的条件下,设椭圆C2的左、右顶点分别为A,B,动点S(x1,y1)∈C2(y1>0)直线AS,BS与直线x=
34
15
分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过圆外一点作圆的切线为切点),再作割线分别交圆于, 若
AC=8,BC=9,则AB=________.

查看答案和解析>>

同步练习册答案