精英家教网 > 高中数学 > 题目详情
13.函数y=log${\;}_{\frac{1}{3}}$(2x2-3x+1)的递增区间为(-∞,$\frac{1}{2}$).

分析 欲求函数f(x)=log${\;}_{\frac{1}{3}}$(2x2-3x+1)的单调递增区间,先考虑u=2x2-3x+1的单调递减区间即可,但必须考虑真数大于0这个范围才行.

解答 解:由2x2-3x+1>0得x<$\frac{1}{2}$或x>1.
令u=2x2-3x+1,则当x<$\frac{1}{2}$时,u=2x2-3x+1为减函数,
当x>1时,u=2x2-3x+1为增函数函数.
又y=log${\;}_{\frac{1}{3}}$u是减函数,故f(x)=log${\;}_{\frac{1}{3}}$(2x2-3x+1)在(-∞,$\frac{1}{2}$)为增函数.
故答案为:(-∞,$\frac{1}{2}$).

点评 本小题主要考查对数函数单调性的应用、二次函数单调性的应用、不等式的解法等基础知识,考查运算求解能力与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.定义在R上的偶函数f(x),当x≥0时,f(x)=x2-x
(1)求函数f(x)的解析式;
(2)求函数f(x)的最小值;
(3)根据图象求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=$\frac{ax+1}{x+2}$(a为常数).
(1)若a=1,证明:f(x)在(-2,+∞)上为单调递增函数;
(2)当x∈(-1,2)时,f(x)的值域为(-$\frac{3}{4}$,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=|x+1|的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.当-$\frac{π}{2}$≤x≤$\frac{π}{2}$时.函数y=$\sqrt{3}sinx+cosx$的最大值和最小值分别是2,-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=$\frac{{x}^{2}-x+2}{x-1}$求
(1)当x>1时,求最值;
(2)当x<1时,求最值;
(3)当2≤x≤3时,求最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{\frac{ax+1}{2-x},x≠2}\\{{a}^{2},x=2}\end{array}\right.$的定义域与值域相同,则实数a的取值是a=0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)已知f(log2x)=x,求f($\frac{1}{2}$)的值;
(2)已知f(10x)=x,求f(3)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ln(x+m)+2x2在点P(0,f(0))处切线方程与x+y=0垂直.若所有x1>x2>-m,f(x1)-f(x2)>a(x1-x2)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案