精英家教网 > 高中数学 > 题目详情
20.设直线l与椭圆$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{8}=1$相交于A,B两点,与圆(x-1)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是(  )
A.(1,$\sqrt{6}$)B.(2,$\sqrt{7}$)C.(2,$\sqrt{6}$)D.(1,$\sqrt{7}$)

分析 先确定M的轨迹是直线x=2,代入椭圆方程,得y2=6,即可得出结论.

解答 解:设A(x1,y1),B(x2,y2),M(x0,y0),
代入椭圆方程相减,整理得(y1+y2)(y1-y2)=4(x1-x2),
当l的斜率存在时,利用点差法可得2ky0=-x0
因为直线与圆相切,所以$\frac{{y}_{0}}{{x}_{0}-1}$=-$\frac{1}{k}$,所以x0=2,
即M的轨迹是直线x=2.
将x=2代入椭圆方程,得y2=6,
∴-$\sqrt{6}$<y0<$\sqrt{6}$,
∵M在圆上,
∴(x0-1)2+y02=r2
∴r2=y02+1≤7,
∵直线l恰有4条,
∴y0≠0,
∴1<r2<7,
故1<r<$\sqrt{7}$时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,1<r<$\sqrt{7}$,
故选D.

点评 本题考查直线与椭圆、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f($\frac{π}{6}$)|对一切x∈R恒成立,则以下结论正确的是①②④(写出所有正确结论的编号).
①$f(\frac{5π}{12})=0$;
②$|{f(\frac{7π}{12})}$|≥$|{f(\frac{π}{3})}$|;
③f(x)的单调递增区间是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$)(k∈Z);
④f(x)既不是奇函数也不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等比数列{an}中,an>0,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,a3与a5的等比中项为2,求数列{an}的通项公式an=${({\frac{1}{2}})^{n-5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线x-y-1=0的倾斜角与其在y轴上的截距分别是(  )
A.135°,1B.45°,-1C.45°,1D.135°,-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=-$\frac{1}{8}{x}^{2}$的准线方程是(  )
A.x=$\frac{1}{32}$B.x=$\frac{1}{2}$C.y=2D.y=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E,F分别是棱AA1,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面BEF,则线段A1P长度的取值范围是[$\frac{\sqrt{30}}{5}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tan(α-β)=$\frac{1}{2}$,tan(α+β)=$\frac{1}{3}$,则tan2β等于(  )
A.$\frac{1}{7}$B.$\frac{4}{3}$C.-$\frac{1}{7}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设函数f(x)在(-∞,+∞)上有意义,对于对定的正数k,定义函数fk(x)=$\left\{\begin{array}{l}{f(x),f(x)<k}\\{k,f(x)≥k}\end{array}\right.$取k=$\frac{1}{2}$,f(x)=($\frac{1}{2}$)|x|,则fk(x)=$\frac{k}{2}$的零点有(  )
A.0个B.1个
C.2个D.不确定,随k的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin2x+sin(2x-$\frac{π}{3}$).
(1)求f(x)的最小正周期;
(2)将f(x)的图象沿x轴向左平移m(m>0)个单位,所得函数g(x)的图象关于直线x=$\frac{π}{8}$对称,求m的最小值及m最小时g(x)在$[0,\frac{π}{4}]$上的值域.

查看答案和解析>>

同步练习册答案