【题目】2019年郑开国际马拉松比赛,于2019年3月31日在郑州、开封举行.某学校本着“我运动,我快乐,我锻炼,我提高”精神,积极组织学生参加比赛及相关活动,为了了解学生的参与情况,从全校学生中随机抽取了150名学生,对是否参与的情况进行了问卷调查,统计数据如下:
会参与 | 不会参与 | |
男生 | 60 | 40 |
女生 | 20 | 30 |
(1)根据上表说明,能否有97.5%的把握认为参与马拉松赛事与性别有关?
(2)现从参与问卷调查且参与赛事的学生中,采用按性别分层抽样的方法选取8人参加2019年马拉松比赛志愿者宣传活动,
①求男、女学生各选取多少人;
②若从这8人中随机选取2人到校广播站开展2019年赛事宣传介绍,求恰好选到2名男生的概率.
附:参考公式:,其中
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
【答案】(1)有97.5%的把握认为参与马拉松赛事与性别有关;(2)①男生选人,女生选人;②.
【解析】
(1)利用计算结果,通过比较即可判断能否有97.5%的把握认为参与马拉松赛事与性别有关;
(2)①根据分层抽样方法可得,选取的8人中,男生和女生人数;②通过列举,可得出8人中选取两人共有28种情况,而选到2男的共15种情况,利用古典概型概率的求法即可求出结果.
(1)因为,
所以有97.5%的把握认为参与马拉松赛事与性别有关.
(2)①根据分层抽样方法得,男生人,女生2人,
所以选取的8人中,男生有6人,女生有2人.
②设抽取的名男生分别为,2名女生为;
从中抽取两人,分别记为,,,,
,,,,,,共28种情况,
其中抽取到2名男生的共15种情况,
所以,恰好选到2名男生的概率.
科目:高中数学 来源: 题型:
【题目】已知在极坐系中,点绕极点顺时针旋转角得到点.以为原点,极轴为轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线绕逆时针旋转得到曲线.
(1)求曲线的直角坐标方程;
(2)点的极坐标为,直线过点且与曲线交于两点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆(为常数且)与直线有且只有一个公共点,.
(Ⅰ)当点的坐标为时,求直线的方程;
(Ⅱ)过椭圆的两焦点,作直线的垂线,垂足分别为,,求四边形面积的最大值(用表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某个微信群某次进行的抢红包活动中,群主所发红包的总金额为10元,被随机分配为2.49元、1.32元、2.19元、0.63元、3.37元共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国政府对PM2.5采用如下标准:
某市环保局从180天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)求这10天数据的中位数.
(2)从这10天的数据中任取3天的数据,记表示空气质量达到一级的天数,求的分布列;
(3)以这10天的PM2.5日均值来估计这180天的空气质量情况,记为这180天空气质量达到一级的天数,求的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足,an+1=an+1,a1=a,则一定存在a,使数列中( )
A.存在n∈N*,有an+1an+2<0
B.存在n∈N*,有(an+1﹣1)(an+2﹣1)<0
C.存在n∈N*,有
D.存在n∈N*,有
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为是上一点.
(1)求椭圆的方程;
(2)设是分别关于两坐标轴及坐标原点的对称点,平行于的直线交于异于的两点.点关于原点的对称点为.证明:直线与轴围成的三角形是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com