精英家教网 > 高中数学 > 题目详情

【题目】2019年郑开国际马拉松比赛,于2019331日在郑州、开封举行.某学校本着我运动,我快乐,我锻炼,我提高精神,积极组织学生参加比赛及相关活动,为了了解学生的参与情况,从全校学生中随机抽取了150名学生,对是否参与的情况进行了问卷调查,统计数据如下:

会参与

不会参与

男生

60

40

女生

20

30

1)根据上表说明,能否有97.5%的把握认为参与马拉松赛事与性别有关?

2)现从参与问卷调查且参与赛事的学生中,采用按性别分层抽样的方法选取8人参加2019年马拉松比赛志愿者宣传活动,

①求男、女学生各选取多少人;

②若从这8人中随机选取2人到校广播站开展2019年赛事宣传介绍,求恰好选到2名男生的概率.

附:参考公式:,其中

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

【答案】1)有97.5%的把握认为参与马拉松赛事与性别有关;(2)①男生选人,女生选人;②.

【解析】

1)利用计算结果,通过比较即可判断能否有97.5%的把握认为参与马拉松赛事与性别有关;

2)①根据分层抽样方法可得,选取的8人中,男生和女生人数;②通过列举,可得出8人中选取两人共有28种情况,而选到2男的共15种情况,利用古典概型概率的求法即可求出结果.

1)因为

所以有97.5%的把握认为参与马拉松赛事与性别有关.

2)①根据分层抽样方法得,男生人,女生2人,

所以选取的8人中,男生有6人,女生有2人.

②设抽取的名男生分别为2名女生为

从中抽取两人,分别记为,,

,,,,,,28种情况,

其中抽取到2名男生的共15种情况,

所以,恰好选到2名男生的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在极坐系中,点绕极点顺时针旋转角得到点.为原点,极轴为轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线逆时针旋转得到曲线.

1)求曲线的直角坐标方程;

2)点的极坐标为,直线过点且与曲线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为常数且)与直线有且只有一个公共点

(Ⅰ)当点的坐标为时,求直线的方程;

(Ⅱ)过椭圆的两焦点作直线的垂线,垂足分别为,求四边形面积的最大值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面内,已知,过直线分别作平面,使锐二面角,锐二面角,则平面与平面所成的锐二面角的余弦值为( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个微信群某次进行的抢红包活动中,群主所发红包的总金额为10元,被随机分配为2.49元、1.32元、2.19元、0.63元、3.37元共5份,供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于4元的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国政府对PM2.5采用如下标准:

某市环保局从180天的市区PM2.5监测数据中,随机抽取10天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).

1)求这10天数据的中位数.

2)从这10天的数据中任取3天的数据,记表示空气质量达到一级的天数,求的分布列;

3)以这10天的PM2.5日均值来估计这180天的空气质量情况,记为这180天空气质量达到一级的天数,求的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足,an+1an+1a1a,则一定存在a,使数列中(

A.存在nN*,有an+1an+20

B.存在nN*,有(an+11)(an+21)<0

C.存在nN*,有

D.存在nN*,有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCDEFGH的一个截面经过顶点AC及棱EF上一点K,且将正方体分成体积比为31的两部分,则的值为______ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

同步练习册答案