【题目】设函数,则满足的的取值范围是( )
A. B. C. D.
【答案】A
【解析】分析:令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以及a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.
详解:令f(a)=t,
则f(t)=2t,
当t<1时,3t﹣1=2t,
由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2tln2,
在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,
即有g(t)<g(1)=0,
则方程3t﹣1=2t无解;
当t≥1时,2t=2t成立,
由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;
或a≥1,2a≥1解得a≥0,即为a≥1.
综上可得a的范围是a≥.
故选:A.
科目:高中数学 来源: 题型:
【题目】数列{an}的前n项和为Sn , 且Sn=3﹣ an , bn是an与an+1的等差中项,则数列{bn}的通项公式为( )
A.4×3n
B.4×( )n
C. ×( )n﹣1
D. ×( )n
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知平面直角坐标中,曲线的参数方程为(为参数),直线的参数方程为(,参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系.
(1)若,求直线以及曲线的极坐标方程;
(2)已知,,,均在曲线上,且四边形为矩形为矩形,求其周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四人进行选择题解题比赛,已知每个选择题选择正确得分,否则得分.其测试结果如下:甲解题正确的个数小于乙解题正确的个数,乙解题正确的个数小于丙解题正确的个数,丙解题正确的个数小于丁解题正确的个数;且丁解题正确的个数的倍小于甲解题正确的个数的倍,则这四人测试总得分数最少为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中,正确的命题是
A. 任意三点确定一个平面
B. 三条平行直线最多确定一个平面
C. 不同的两条直线均垂直于同一个平面,则这两条直线平行
D. 一个平面中的两条直线与另一个平面都平行,则这两个平面平行
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,,,,,.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设为抛物线的准线上一点,F为C 的焦点,点P在C上且满足,若当m取得最小值时,点P恰好在以原点为中心,F为焦点的双曲线上,则该双曲线的离心率为
A. B. 3 C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com