精英家教网 > 高中数学 > 题目详情

【题目】如图.已知四棱锥的底面为直角梯形,平面平面,且的中点分别是.

1)求证:平面

2)求二面的余弦值.

【答案】1)证明见解析;(2

【解析】

1)求证:由,平面平面平面.得证,有数据说话得证,可证得平面.,再证明即可

2两两垂直,建立空间直角坐标系,利用空间向量求二面的余弦值.

1)易知四边形为正方形,.

的中点是,∴.

∵平面平面,平面平面

平面.

.

又∵

平面.

的中点分别是,∴.

平面.

2)由(1)知两两垂直,建立如图的空间直角坐标系.

,∴.

则点.

.

设平面的一个法向量

,得

又设平面的一个法向量为

,得.

.

由图形得二面角为锐角,∴二面角的余弦值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:

总计

认为共享产品对生活有益

认为共享产品对生活无益

总计

(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?

(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.

参与公式:

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知点,动点满足直线的斜率之积为.的轨迹为曲线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求的直角坐标方程;

(2)求上的点到距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知Sn为数列{an}的前n项和,且Sn+22annN*.

1)求数列{an}的通项公式;

2)令bn,设数列{bn}的前项和为Tn,若Tn,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形,平面平面,且的中点分别是

(Ⅰ)求证:平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象上的各点的横坐标缩短到原来的,纵坐标不变,再向左平移个单位,得到的图象,下列说法正确的是(

A.是函数图象的对称中心

B.函数上单调递减

C.函数的图象与函数的图象相同

D.是函数的零点,则的整数倍

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费(万元)和年销售量(单位:)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(万元)

2

4

5

3

6

(单位:

2.5

4

4.5

3

6

1)根据表中数据建立年销售量关于年宣传费的回归方程;

2)已知这种产品的年利润的关系为,根据(1)中的结果回答下列问题:

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?

②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.

附:问归方程中的斜率和截距的最小二乘估计公式分别为.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,抛物线的焦点坐标为,点在该抛物线上且位于轴的两侧,

(Ⅰ)证明:直线过定点

(Ⅱ)以为切点作的切线,设两切线的交点为,点为圆上任意一点,求的最小值.

查看答案和解析>>

同步练习册答案