精英家教网 > 高中数学 > 题目详情

【题目】某校拟从甲、乙两名同学中选一人参加疫情知识问答竞赛,于是抽取了甲、乙两人最近同时参加校内竞赛的十次成绩,将统计情况绘制成如图所示的折线图.根据该折线图,下面结论正确的是(

A.甲、乙成绩的中位数均为7

B.乙的成绩的平均分为6.8

C.甲从第四次到第六次成绩的下降速率要大于乙从第四次到第五次的下降速率

D.甲的成绩的方差小于乙的成绩的方差

【答案】D

【解析】

A中,将乙十次的成绩从小到大排列,求出中位数为7.5;在B中,求出乙的成绩的平均分为7;在C中,从折线图可以看出甲第6次所对应的点与乙第4次和第5次所对应的点均在同一条直线上,故下降速率相同;在D中,从折线图可以看出,乙的成绩比甲的成绩波动更大,甲的成绩的方差小于乙的成绩的方差.

A中,将乙十次的成绩从小到大排列,

24677889910

∴中位数为,故A错误;

B中,乙的成绩的平均分为:2+4+6+7+7+8+8+9+9+10)=7,故B错误;

C中,从折线图可以看出甲第6次所对应的点与乙第4次和第5次所对应的点均在同一条直线上,

故下降速率相同,故C错误;

D中,从折线图可以看出,乙的成绩比甲的成绩波动更大,

∴甲的成绩的方差小于乙的成绩的方差,故D正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)若恒成立,求实数的最大值

2)在(1)的条件下,求证:函数在区间内存在唯一的极大值点,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图统计了截止到2019年年底中国电动汽车充电桩细分产品占比及保有量情况,关于这5次统计,下列说法正确的是(

A.私人类电动汽车充电桩保有量增长率最高的年份是2018

B.公共类电动汽车充电桩保有量的中位数是25.7万台

C.公共类电动汽车充电桩保有量的平均数为23.12万台

D.2017年开始,我国私人类电动汽车充电桩占比均超过50%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形为平行四边形,且.

1)证明:平面

2)当直线与平面所成角的正切值为时,求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,轴非负半轴为极轴,长度单位相同,建立极坐标系,曲线的极坐标方程为,直线过点倾斜角为.

1)将曲线的极坐标方程化为直角坐标方程,并写出直线的参数方程;

2)当时,直线交曲线两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,M上的一点,以为折痕把折起,使点D到达点P的位置,且平面平面.连接,点N的中点,且平面.

1)求线段的长;

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是矩形M的中点,将沿翻折,得到四棱锥,如图2

(Ⅰ)若点N的中点,求证:平面

(Ⅱ)若.求点A到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,直线,点上一动点,过作直线的中垂线,交于点,设点的轨迹为曲线Γ.

1)求曲线Γ的方程;

2)若过的直线与Γ交于两点,线段的垂直平分线交轴于点,求的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上是减函数,求实数的最大值;

2)若,求证:.

查看答案和解析>>

同步练习册答案