【题目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在 上运动(如图).若 =λ +μ ,其中λ,μ∈R,则6λ+μ的取值范围是( )
A.[1, ]
B.[ ,2 ]
C.[2,2 ]
D.[1,2 ]
【答案】C
【解析】解:建立如图所示的坐标系,
则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),
P(cosα,sinα)(0≤α≤ ),
由 =λ +μ 得,(cosα,sinα)=λ(2,1)+μ(﹣1, )
cosα=2λ﹣μ,sinα=λ+
λ= ,
∴6λ+μ=6( )+ =2(sinα+cosα)=2 sin( )
∵ ,∴sin( )
∴2 sin( )∈[2,2 ],即6λ+μ的取值范围是[2,2 ].
故选:C
【考点精析】关于本题考查的平面向量的基本定理及其意义,需要了解如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果,经随机模拟产生了如下20组随机数,据此估计,该运动员三次投篮恰有两次命中的概率为( )
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
A.0.40
B.0.30
C.0.35
D.0.25
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程: =0. 254x+0. 321. 由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加万元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42. 5%,中年人占47. 5%,老年人占10%. 登山组的职工占参加活动总人数的 ,且该组中,青年人占50%,中年人占40%,老年人占10%. 为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C的参数方程为 (α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|(x+2m)(x﹣m+4)<0},其中m∈R,集合B={x| >0}.
(1)若BA,求实数m的取值范围;
(2)若A∩B=,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com