精英家教网 > 高中数学 > 题目详情

已知为平面上的一个定点,A、B、C是该平面上不共线的三个动点,点满足条件,则动点的轨迹一定通过的(   )

    A.重心             B.垂心             C.外心             D.内心

                                                                       

C

解析:设线段BC的中点为D,则,∴

    ∴

    ∴

   

    ∴,即点一定在线段的垂直平分线上,

    即动点的轨迹一定通过的外心,选C.

    答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下几个命题:
①由曲线y=x2与直线y=2x围成的封闭区域的面积为
4
3

②已知点A是定圆C上的一个定点,线段AB为圆的动弦,若
OP
=
1
2
(
OA
+
OB
)
,O为坐标原点,则动点P的轨迹为圆;
③把5本不同的书分给4个人,每人至少1本,则不同的分法种数为A54•A41=480种;
④若直线l∥平面α,直线l⊥直线m,直线l?平面β,则β⊥α.
其中,正确的命题有
 
.(将所有正确命题的序号都填在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x-1)2+y2=16,圆C2:(x+1)2+y2=1,点S为圆C1上的一个动点,现将坐标平面折叠,使得圆心C2(-1,0)恰与点S重合,折痕与直线SC1交于点P.
(1)求动点P的轨迹方程;
(2)过动点S作圆C2的两条切线,切点分别为M、N,求MN的最小值;
(3)设过圆心C2(-1,0)的直线交圆C1于点A、B,以点A、B分别为切点的两条切线交于点Q,求证:点Q在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①已知直线a,b和平面α,若a∥b,b∥α,则a∥α;
②平面上到一个定点和一条定直线的距离相等的点的轨迹是一条抛物线;
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),则直线y=
b
a
x+m(m∈R)与双曲线有且只有一个公共点;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直;
⑤过M(2,0)的直线l与椭圆
x2
2
+y2=1交于P1P2两点,线段P1P2中点为P,设直线l斜率为k1(k≠0),直线OP的斜率为k2,则k1k2等于-
1
2

其中,正确命题的序号为
④⑤
④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,点M是PC的中点,点E是AB上的一个动点,且该四棱锥的三视图如图所示,其中正视图和侧视图是直角三角形.
(I)求证:PA∥平面BDM;
(II)若点E是AB的中点,求证:CE⊥平面PDE;
(III)无论点E在何位置,是否均有三棱锥C-PDE的体积为定值?若是,请求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省六校教育研究会高三2月联考理科数学试卷(解析版) 题型:解答题

在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆在第一象限上的任一点,连接,点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值

III)在第(Ⅱ)问的条件下,,设于点

证明:在椭圆上移动时,在某定直线上.

 

查看答案和解析>>

同步练习册答案