精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD.

(1)求证:EF∥平面PAD;

(2)若EF⊥PC,求证:平面PAB⊥平面PCD.

【答案】(1)见解析;(2)见解析

【解析】分析:(1)连结,则的中点,的中点,得利用线面平行的判定定理,即可证得平面

(2)由(1)可得,,又由平面为正方形,得平面所以CDPA,从而得到平面,利用面面垂直的判定定理,即可证得平面平面

详解:(1)连结,则的中点,的中点,

故在中,

因为平面平面,所以平面

(2)由(1)可得,EF//PA,又EF⊥PC

所以PA⊥PC

因为平面平面,平面ABCD为正方形

所以,平面,所以CD⊥PA

,所以PA⊥平面PDC

平面,所以平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=loga(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n均大于0,则 的最小值为(  )
A.2
B.4
C.8
D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G为线段AD上的任意一点.
(1)若M是线段EF的中点,证明:平面AMG⊥平面BDF;
(2)若N为线段EF上任意一点,设直线AN与平面ABF,平面BDF所成角分别是α,β,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在半径为R的圆内,作内接等腰△ABC,当底边上高h∈(0,t]时,△ABC的面积取得最大值 ,则t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角坐标 中,设椭圆 的左右两个焦点分别为 ,过右焦点 且与 轴垂直的直线 与椭圆 相交,其中一个交点为 .

(1)求椭圆 的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高一年级期中考试的学生中随机抽出60名学生将其物理成绩(均为整数)分成六段[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图观察图形的信息回答下列问题:

(1)求分数在[70,80)内的频率并补全这个频率分布直方图;

(2)统计方法中同一组数据常用该组区间的中点值作为代表据此估计本次考试中的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1) 时,证明:
(2)当 时,直线 和曲线 切于点 ,求实数 的值;
(3)当 时,不等式 恒成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,过对角线的一个平面交于点,交.

①四边形一定是平行四边形;

②四边形有可能是正方形;

③四边形在底面内的投影一定是正方形;

④四边形有可能垂直于平面

以上结论正确的为_______________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,右顶点为 ,离心率为 ,直线 与椭圆 相交于不同的两点 ,过 的中点 作垂直于 的直线 ,设 与椭圆 相交于不同的两点 ,且 的中点为
(Ⅰ)求椭圆 的方程;
(Ⅱ)设原点 到直线 的距离为 ,求 的取值范围.

查看答案和解析>>

同步练习册答案