精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2-x-8y+m=0与直线x+2y-6=0相交于P、Q两点,定点R(1,1),若PR⊥QR,求m的值.
分析:设P(x1,y1),Q(x2,y2),联立方程组消y并整理可得关于x的二次方程,由韦达定理可得x1+x2和x1x2的值,再由点P,Q在直线x+2y-6=0上,可得y1y2,y1+y2,而由PR⊥QR可得
PR
QR
=0,代入数据可得关于m的方程,解之可得.
解答:解:设P(x1,y1),Q(x2,y2),联立方程组可得
x2+y2-x-8y+m=0
x+2y-6=0

消y并整理可得x2+
4
5
m-12=0

由韦达定理可得x1+x2=0,x1x2=
4
5
m-12

又点P(x1,y1),Q(x2,y2)在直线x+2y-6=0上,
y1=3-
x1
2
y2=3-
x2
2
,即y1y2=9+
x1x2
4
y1+y2=6

又∵R(1,1),∴
PR
=(1-x1,1-y1),
QR
=(1-x2,1-y2
由PR⊥QR可得
PR
QR
=(x1-1)(x2-1)+(y1-1)(y2-1)=0
即x1x2-(x1+x2)+1+y1y2-(y1+y2)+1=0,
代入数据可得
1
4
(
4
5
m-12)+1=0
,解得m=10.
点评:本题考查直线与圆的位置关系,涉及向量的数量积的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案