精英家教网 > 高中数学 > 题目详情
椭圆
x2
36
+
y2
27
=1
,过右焦点F作不垂直于x轴的弦交椭圆于A、B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于______.
∵椭圆
x2
36
+
y2
27
=1
中,a2=36且b2=27,
∴c=
a2-b2
=3,可得右焦点为F(3,0).
根据题意,过右焦点F作不垂直于x轴的弦交椭圆于A、B两点,
AB的垂直平分线交x轴于N,则|NF|:|AB|为一个常数,
与直线AB的斜率无关,因此考虑取特殊位置.
当AB的斜率k=0时,AB恰好是椭圆的长轴,AB的垂直平分线为y轴,
此时AB的垂直平分线交x轴于原点,N点与原点0(0,0)重合,
∴|AB|=2a=12,|NF|=c=3,可得|NF|:|AB|=
1
4

故答案为:
1
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2
6
,点P(x0,y0),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x0的取值范围;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程mx2+(2-m)y2=1表示焦点在x轴上的椭圆,则实数m的取值范围是(  )
A.(1,+∞)B.(0,2)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(-3,0),F2(3,0),则椭圆的方程为(  )
A.
x2
12
+
y2
3
=1
B.
x2
25
+
y2
16
=1
C.
x2
45
+
y2
36
=1
D.
x2
81
+
y2
72
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中,有c>b,则离心率e的取值范围是(  )
A.(0,
2
2
)
B.(
2
2
,1)
C.(0,1)D.(1,
2
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),A(2,0)为长轴的一个端点,弦BC过椭圆的中心O,且
AC
BC
=0,|
OC
-
OB
|
=2|
BC
-
BA
|
,则其焦距为(  )
A.
2
6
3
B.
4
3
3
C.
4
6
3
D.
2
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点是F1和F2,长轴是A1A2,P是椭圆上异于A1、A2的点,考虑如下四个命题:
①|PF1|-|A1F1|=|A1F2|-|PF2|;
②a-c<|PF1|<a+c;
③若b越接近于a,则离心率越接近于1;
④直线PA1与PA2的斜率之积等于-
b2
a2

其中正确的命题是(  )
A.①②④B.①②③C.②③④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0),A为左顶点,B为短轴一顶点,F为右焦点且AB⊥BF,则这个椭圆的离心率等于______.

查看答案和解析>>

同步练习册答案