精英家教网 > 高中数学 > 题目详情

在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则C等于


  1. A.
    30°
  2. B.
    150°
  3. C.
    30°或150°
  4. D.
    60°或120°
A
分析:先把题设中的两个等式平方后相加,根据两角和公式求得sin(A+B)即sinC的值,进而求得C,当C=150°时3sinA+4cosB<3sin30°+4cos0°与题设矛盾,排除,最后答案可得.
解答:已知两式两边分别平方相加,得25+24(sinAcosB+cosAsinB)=25+24sin(A+B)=37,
∴sin(A+B)=sinC=,∴C=30°或150°.
当C=150°时,A+B=30°,
此时3sinA+4cosB<3sin30°+4cos0°=,这与3sinA+4cosB=6相矛盾,
∴C=30°.
故选A
点评:本题主要考查了两角和与差的正弦函数,同角三角函数基本关系的应用.解题最后注意对所求结果进行验证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C的大小为(  )
A、
π
6
B、
5
6
π
C、
π
6
5
6
π
D、
π
3
2
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则∠C的大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,则C等于(  )
A、30°B、150°C、30°或150°D、60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,3sinA+4cosB=6,4sinB+3cosA=1,求C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,3sinA-4sinB=6,4cosB+3cosA=1,则C的大小为(  )

查看答案和解析>>

同步练习册答案