【题目】已知.
(1)求函数的单调区间;
(2)若对任意,都有,求实数的取值范围.
【答案】(1)见解析;(2).
【解析】
(1)求出函数的定义域和导数,对分和两种情况,分析在上的符号,可得出函数的单调区间;
(2)由,转化为,构造函数,且有,问题转化为,对函数求导,分析函数的单调性,结合不等式求出实数的取值范围.
(1)函数的定义域为,.
①当时,对任意的,,此时,函数的单调递减区间为;
②当时,令,得;令,得.
此时,函数的单调递减区间为,单调递增区间为;
(2),即,得,
又,不等式两边同时除以,得,即.
易知,由题意可知对任意的恒成立,.
①若,则当时,,,此时,
此时,函数在上单调递减,则,不合乎题意;
②若,对于方程.
(i)当时,即,恒成立,
此时,函数在上单调递增,则有,合乎题意;
(ii)当时,即时,
设方程的两个不等实根分别为、,且,
则,,所以,,,.
当时,;当时,,,不合乎题意.
综上所述,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,,,,,(单位:克)中,经统计,频率分布直方图如图所示:
(1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);
(2)现按分层抽样从质量为,的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
(3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有1000个,经销商提出以下两种收购方案:
方案①:所有芒果以9元/千克收购
方案②:对质量低于250克的芒果以2元/个收购,对质量高于或等于250克的芒果以3元/个收购.通过计算确定种植园选择哪种方案获利更多.
参考数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】.
为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为,最后一组数据的频数是6.
(Ⅰ)估计该校高三学生质检数学成绩在125~140分之间的概率,并求出样本容量;
(Ⅱ)从样本中成绩在65~95分之间的学生中任选两人,求至少有一人成绩在65~80分之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,已知曲线:和曲线:,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.
(1)求曲线和曲线的直角坐标方程;
(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数,对任意实数,均满足,且,数列,满足,,则下列说法正确的有_____
①数列为等比数列;
②数列为等差数列;
③若为数列的前n项和,则;
④若为数列{}的前项和,则;
⑤若为数列{}的前项和,则.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图几何体是圆锥的一部分,它是Rt△ABC(及其内部)以一条直角边AB所在直线为旋转轴旋转150°得到的,AB=BC=2,P是弧上一点,且EB⊥AP.
(1)求∠CBP的大小;
(2)若Q为AE的中点,D为弧的中点,求二面角Q﹣BD﹣P的余弦值;
(3)直线AC上是否存在一点M,使得B、D、M、Q四点共面?若存在,请说明点M的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com