分析 假设存在,根据新定义,得到关于I(x,y)的一个方程组,解得即可.
解答 解:设A中的元素I=(x,y),对?α∈A,都有α⊙I=I⊙α=α成立,
只需I⊙a=a,即(x,y)⊙(a,b)=(a,b)?(bx+ay,by-ax)=(a,b)
①若a=(0,0),显然有I⊙α=α成立,
②若a≠(0,0),则$\left\{\begin{array}{l}{bx+ay=a}\\{-ax+by=b}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴当对?α∈A,都有α⊙I=I⊙α=α成立时,得I=(0,0)或I=(0,1),
易验证当I=(0,0)或I=(0,1)时,有对?α∈A,都有α⊙I=I⊙α=α成立
∴I=(0,0)或I=(0,1).
故答案为:(0,0)或(0,1).
点评 这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ($\frac{2}{5}$,$\frac{2}{3}$) | B. | (-∞,$\frac{2}{5}$]∪($\frac{2}{3}$,+∞) | C. | [$\frac{2}{5}$,$\frac{2}{3}$) | D. | [$\frac{2}{5}$,$\frac{2}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com