精英家教网 > 高中数学 > 题目详情
由2开始的偶数数列,按下列方法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的首项为(  )
分析:设第n组的首项为an,由题中数列的规律可得a2-a1=2,a3-a2=4,a4-a3=6,…,an-an-1=2(n-1).由此结合题中数据利用等差数列求和公式,即可算出an的通项公式,从而得出第n组的首项.
解答:解:根据题意,可得如图的三角形数阵
记每一行的第一个数为an,得
a1=2,a2=4,a3=8,a4=14,…
发现如下规律:
a2-a1=2,a3-a2=4,a4-a3=6,…,an-an-1=2(n-1)
将此n-1个式子相加,得
an-a1=2[1+2+3+…+(n-1)]=2×
n(n-1)
2
=n2-n,
∴an=a1+(n2-n)=n2-n+2,即第n组的首项为n2-n+2
故选:D
点评:本题给出数列实际应用问题,求第n组的首项.着重考查了等差数列的通项公式、求和公式和归纳推理的一般方法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染16后面最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,….则在这个红色子数列中,由1开始的第2009个数是(  )
A、3948B、3953C、3955D、3958

查看答案和解析>>

科目:高中数学 来源: 题型:

14、在正整数数列中,由1开始依次按如下规则将某些数染成红色,先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第57个数是
103

查看答案和解析>>

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则取它的项:第一次取1,第二次取2个连续偶数2、4;第三次取3个连续奇数5、7、9;第四次取4个连续偶数10、12、14、16;第五次取5个连续奇数17、19、21、23、25.按此规则一直取下去,得到一个子数列1,2,4,5,7,9,12,14,16,17,….则在这个子数列中,由1开始的第2008个数是
3953
3953

查看答案和解析>>

科目:高中数学 来源: 题型:

在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1;再染两个偶数2,4;再染4后面最临近的三个连续奇数5,7,9;再染9后面最临近的四个连续偶数10,12,14,16;再染此后最临近的五个连续奇数17,19,21,23,25.按此规则一直染下去.得到一个红色子数列1,2,4,5,7,9,10,12,14,16,17,19,21,23,25….则红色子数列由1开始的第2010个数是
3957
3957

查看答案和解析>>

同步练习册答案