考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点C(3,1)时,直线y=-2x+z的截距最大,
此时z最大.
将C的坐标代入目标函数z=2x+y,
得z=2×3+1=7.即z=2x+y的最大值为7.
故选:C
点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.