精英家教网 > 高中数学 > 题目详情
已知数列{ an}的前n项和为Sn=n2-5n+2,则数列{|an|}的前10项和为
60
60
分析:根据等差数列的基本知识先求得等差数列{an}的通项公式,可知等差数列{an}的前2项为负数,先求出-S2的值,可求得数列{|an|}的前10项的和.
解答:解:∵Sn=n2-5n+2,
当n=1时,a1=S1=-2
当n≥2时,an=sn-sn-1=n2-5n+2-(n-1)2+5(n-1)-2=2n-6
由an<0 得 n<3,即数列的前2项为负,
S10=|a1|+|a2|+…+|a10|
=-a1-a2+a3+…+a10
=s10-2(a1+a2)=52-2(-2-2)=60
故答案为:60
点评:本题考查了等差数列通项公式的求法和前n项和的求法,解题时注意数列{an}的前6项为负数,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{
anpn-1
}
的前n项和Sn=n2+2n(其中常数p>0),数列{an}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求Tn的表达式;
(Ⅲ)若对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}满足:a1=
1
2
,an+1=
n+1
2n
an,数列{bn}满足nbn=an(n∈N*).
(1)证明数列{bn}是等比数列,并求其通项公式:
(2)求数列{an}的前n项和Sn
(3)在(2)的条件下,若集合{n|
(n2+n)(2-Sn)
n+2
≥λ,n∈N*}=∅.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}为Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
a
 
n
}
的前n项和为Sn,且向量
a
=(n,Sn)
b
=(4,n+3)
共线.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)求数列{
1
nan
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列数列{an}前n项和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值为8.
(Ⅰ)确定常数k并求{an}的通项公式;
(Ⅱ)若bn=9-2an,求数列{
1
bnbn+1
}
前n项和Tn

查看答案和解析>>

同步练习册答案