分析 (1)由题意,命题p与命题q一真一假,化简命题p与命题q为真时实数a的取值范围,从而求得;
(2)由p,q均为真命题,得到关于a的不等式组,解出即可.
解答 解:(1)当命题P为真时,△=4a2+4a≥0,则a≥0或a≤-1,
当命题q为真时,(a+2)x2+4x+a-1≥0恒成立,
则a+2>0,且16-4(a+2)(a-1)≤0,即a≥2.
由题意可得,命题p与命题q一真一假,
当p真q假时,a≤-1或0≤a<2,
当p假q真时,无解,
则实数a的取值范围为(-∞,-1]∪[0,2);
(2)如果命题“p∨q”为真命题,则p,q至少一个是真命题,
则a≥0或a≤-1或a≥2,解得:a≥0或a≤-1.
点评 本题考查了复合命题真假性的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | (-∞,-3] | B. | [1,+∞) | C. | [-3,+∞) | D. | (-∞,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0<α<π | B. | 0<α<$\frac{3π}{2}$ | C. | 0<α<$\frac{π}{2}$ | D. | $\frac{π}{4}$≤α≤$\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com