精英家教网 > 高中数学 > 题目详情

【题目】已知函数.证明:

1存在唯一的极值点;

2有且仅有两个实根,且两个实根互为倒数.

【答案】1)见详解;(2)见详解

【解析】

1)先对函数求导,根据导函数的单调性,得到存在唯一,使得,进而可得判断函数的单调性,即可确定其极值点个数,证明出结论成立;

2)先由(1)的结果,得到,得到内存在唯一实根,记作,再求出,即可结合题意,说明结论成立.

1)由题意可得,的定义域为

显然单调递增;

故存在唯一,使得

又当时,,函数单调递增;当时,,函数单调递减;

因此,存在唯一的极值点;

2)由(1)知,,又

所以内存在唯一实根,记作.

是方程内的唯一实根;

综上,有且仅有两个实根,且两个实根互为倒数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于函数.有下列命题:

①对,恒有成立.

,使得成立.

③“若,则有.”的否命题.

④“若,则有.”的逆否命题.

其中,真命题有_____________.(只需填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,平面的中点,的中点,点上,

1)证明:平面平面

2)证明:平面

3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,又有四个零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为的圆经过点,且圆心在直线上.

1)求圆的方程;

2)若过点的直线被圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.

(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;

(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的导函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,证明

(Ⅲ)设为函数在区间内的零点,其中,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:

为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.

(1)求乙离子残留百分比直方图中的值;

(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

同步练习册答案