精英家教网 > 高中数学 > 题目详情
设向量
a
=(1,cos2θ)
b
=(2,1)
c
=(4sinθ,1)
d
=(
1
2
sinθ,1)
,其中θ∈(0,
π
4
).
(1)求
a
b
-
c
d
的取值范围;
(2)若函数f(x)=|x-1|,比较f(
a
b
)与f(
c
d
)的大小.
分析:(1)利用向量数量积的坐标运算将
a
b
-
c
d
表达为θ的三角函数,利用二倍角公式去平方,结合余弦函数的图象求范围即可.
(2)首先将f(
a
b
)与f(
c
d
)均表达为θ的函数,分别判断范围,再比较大小即可.
解答:解:(1)∵
a
b
=2+cos2θ,
c
d
=2sin2θ+1=2-cos2θ,
a
b
-
c
d
=2cos2θ,
0<θ<
π
4
,∴0<2θ<
π
2
,∴0<2cos2θ<2,
a
b
-
c
d
的取值范围是(0,2).
(2)∵f(
a
b
)=|2+cos2θ-1|=|1+cos2θ|=2cos2θ,
f(
c
d
)=|2-|cos2θ-1=|1-cos2θ|=2cos2θ,
∴f(
a
b
)-f(
c
d
)=2(2cos2θ-2cos2θ)=2cos2θ,
0<θ<
π
4
,∴0<2θ<
π
2
,∴2cos2θ>0,
∴f(
a
b
)>f(
c
d
点评:本题考查向量的运算、三角变换及三角函数的性质等知识,熟练的利用三角函数公式进行化简变形时解决此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(1,1)
b
=(2,3),若λ
a
-
b
与向量
c
=(-7,-8)
共线,则λ=
-5
-5

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,sinθ)
b
=(3sinθ,1)
,且
a
b
,则cos2θ=
1
3
1
3

查看答案和解析>>

科目:高中数学 来源:湖南模拟 题型:解答题

设向量
a
=(1,cos2θ)
b
=(2,1)
c
=(4sinθ,1)
d
=(
1
2
sinθ,1)
,其中θ∈(0,
π
4
).
(1)求
a
b
-
c
d
的取值范围;
(2)若函数f(x)=|x-1|,比较f(
a
b
)与f(
c
d
)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量a=(1,cos2θ),b=(2,1),c=(4sinθ,1),d=(sinθ,1),其中θ∈(0,).

(1)求a·b-c·d的取值范围;

(2)若函数f(x)=|x-1|,比较f(a·b)与f(c·d)的大小.

查看答案和解析>>

同步练习册答案