精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aln xx在区间[2,3]上单调递增,则实数a的取值范围是________.
[-2,+∞)
f(x)=aln xx.∴f′(x)=+1.
又∵f(x)在[2,3]上单调递增,∴+1≥0在x∈[2,3]上恒成立,∴a≥(-x)max=-2,∴a∈[-2,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证:当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数y=f(x),x∈R的导函数为f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:ef(2),f(3),e2f(-1)从小到大依次排列为________.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x3x2g(x)=aln xa∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=P是曲线yF(x)上异于原点O的任意一点,在曲线yF(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数f(x)=x3-3axb(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

可导函数的导函数为,且满足:①;②,记的大小顺序为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数点处取到极值,其中是坐标原点,在曲线上,则曲线的切线的斜率的最大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知e为自然对数的底数,则函数y=xex的单调递增区间是(  )
A.[-1,+∞) B.(-∞,-1]
C.[1,+∞) D.(-∞,1]

查看答案和解析>>

同步练习册答案