精英家教网 > 高中数学 > 题目详情
6.已知{αn}是等差数列,且a5+a17=4,那么它的前21项之和等于    (  )
A.42B.40$\frac{1}{2}$C.40D.21

分析 利用等差数列的性质及其前n项和公式即可得出.

解答 解:∵{αn}是等差数列,且a5+a17=4,
∴它的前21项之和=$\frac{21({a}_{1}+{a}_{21})}{2}$=$\frac{21×({a}_{5}+{a}_{17})}{2}$=$\frac{21×4}{2}$=42.
故选:A.

点评 本题考查了等差数列的性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知A、B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点,C(0,b),直线l:x=2a与x轴交于点D,与直线AC交于点P,且BP平分角∠DBC,则椭圆的离心率为$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在g(x)≤f(x)+4成立,则a的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=$\frac{2-sinx}{3+cosx}$的最小值为$\frac{3+\sqrt{3}}{4}$,最大值为$\frac{3-\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.作出函数y=|sin(x+$\frac{3π}{2}$)|在[-2π,2π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知等比数列{an}的公比为q≠-1,前n项和为Sn,若集合M={S|S=$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{2n}}$},则集合M等于(  )
A.{0}B.{0,$\frac{1}{2}$,1}C.{1,$\frac{1}{2}$}D.{0,$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.等差数列6,4,2…的第n+1项是(  )
A.6+2nB.6-2nC.2n+4D.8-2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线Γ:x2=2py(p>0),焦点为F,点P在抛物线Γ上,且P到F的距离比P到直线y=-2的距离小1.
(1)求抛物线Γ的方程;
(2)若点N为直线l:y=-5上的任意一点,过点N做抛物线Γ的切线NA与NB,切点分别为A,B,求证:直线AB恒过某一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若点P(x,y)在圆(x-2)2+y2=3上.
(1)$\sqrt{{x}^{2}+{y}^{2}}$的最大值和最小值;
(2)求$\frac{y}{x}$的最大值和最小值.

查看答案和解析>>

同步练习册答案