【题目】设在上有定义,要使函数有定义,则a的取值范围为
A.;B.C.;D.
【答案】B
【解析】
由条件得:
∴函数y=f(x+a)+f(x-a)的定义域就是集合{x|-a≤x≤1-a}与{x|a≤x≤1+a}的交集.
(1)当a>时,1-a<a,
集合{x|-a≤x≤1-a}与{x|a≤x≤1+a}的交集为空集,
∴此时,函数y没有意义;
(2)当0≤a≤时,-a≤a≤1-a≤1+a,
集合{x|-a≤x≤1-a}与{x|a≤x≤1+a}的交集为{x|a≤x≤1-a},
即函数y的定义域为{x|a≤x≤1-a};
(3)当-≤a<0时,a<-a≤1+a<1-a,
集合{x|-a≤x≤1-a}与{x|a≤x≤1+a}的交集为{x|-a≤x≤1+a},
即函数y的定义域为{x|-a≤x≤1+a};
(4)当a<-时,1+a<-a,
集合{x|-a≤x≤1-a}与{x|a≤x≤1+a}的交集为空集,
∴此时,函数y没有意义.
要使函数f(x-a)+f(x+a)有定义,a∈故选B.
科目:高中数学 来源: 题型:
【题目】设函数的定义域为D,若函数满足条件:存在,使在上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;
(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为 (为参数)。在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线。
(1)写出曲线,的普通方程;
(2)过曲线的左焦点且倾斜角为的直线交曲线于两点,求。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》第八章“方程”问题八:今有卖牛二、羊五,以买十三豕,有余钱一千。卖牛三、豕三,以买九羊,钱适足.卖羊六、豕八,以买五牛,钱不足六百.问牛、羊、豕各几何?“如果卖掉2头牛和5只羊,可买13口猪,还余1000钱;卖掉3头牛和3口猪的钱恰好可买9只羊;而卖掉6只羊和8口猪,去买5头牛,还少600钱.问牛、羊、猪的价格各是多少”.按照题意,可解出牛______钱、羊______钱、猪______钱.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】峰谷电是目前在城市居民当中开展的一种电价类别.它是将一天24小时划分成两个时间段,把8:00—22:00共14小时称为峰段,执行峰电价,即电价上调;22:00—次日8:00共10个小时称为谷段,执行谷电价,即电价下调.为了进一步了解民众对峰谷电价的使用情况,从某市一小区随机抽取了50 户住户进行夏季用电情况调查,各户月平均用电量以,,,,,(单位:度)分组的频率分布直方图如下图:
若将小区月平均用电量不低于700度的住户称为“大用户”,月平均用电量低于700度的住户称为“一般用户”.其中,使用峰谷电价的户数如下表:
月平均用电量(度) | ||||||
使用峰谷电价的户数 | 3 | 9 | 13 | 7 | 2 | 1 |
(1)估计所抽取的 50户的月均用电量的众数和平均数(同一组中的数据用该组区间的中点值作代表);
(2)()将“一般用户”和“大用户”的户数填入下面的列联表:
一般用户 | 大用户 | |
使用峰谷电价的用户 | ||
不使用峰谷电价的用户 |
()根据()中的列联表,能否有的把握认为 “用电量的高低”与“使用峰谷电价”有关?
0.025 | 0.010 | 0.001 | |
5.024 | 6.635 | 10.828 |
附:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com