精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增,若实数a满足f(lga)+f(lg )≤2f(1),则a的取值范围是(
A.(﹣∞,10]
B.[ ,10]
C.(0,10]
D.[ ,1]

【答案】B
【解析】解:∵函数f(x)是定义在R上的偶函数,
∴f(lga)+f(lg )≤2f(1),等价为f(lga)+f(﹣lga)=2f(lga)≤2f(1),
即f(lga)≤f(1).
∵函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增,
∴f(lga)≤f(1)等价为f(|lga|)≤f(1).
即|lga|≤1,
∴﹣1≤lga≤1,
解得 ≤a≤10,
故选:B.
【考点精析】关于本题考查的奇偶性与单调性的综合,需要了解奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,菱与四边形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M为CF的中点,

(I)求证:GM//平面CDE;

(II)求证:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A、B、C所对的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,且c=2a,求cosB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2+x﹣6y+m=0与直线x+2y﹣3=0相交于P,Q两点,O为原点,且OP⊥OQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知中心在原点,焦点在轴上的椭圆C的离心率为,且经过点

1求椭圆C的方程;

2是否存在过点的直线与椭圆C相交于不同的两点,满足?若存在,求出直线的方程;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面分别是棱的中点.

1)求证:平面

2)求证:平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l1:x+my+1=0和l2:(m﹣3)x﹣2y+(13﹣7m)=0.
(1)若l1⊥l2 , 求实数m的值;
(2)若l1∥l2 , 求l1与l2之间的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面APD;
(Ⅱ)求证:BC⊥平面PBD.

查看答案和解析>>

同步练习册答案