精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

【答案】(I);(II)详见解析.

【解析】试题分析:(I)对函数求导,可得函数单调性,并求得函数的最小值,若函数有零点,函数最小值小于零且在定义域范围有函数值大于零,解不等式可得的范围;()代入不等式化简为,可构造函数 利用导数判断单调性可知在 条件下 最小值为 最大值为.可证命题.

试题解析:

()法1: 函数的定义域为.

, .

因为,, ; , .

所以函数上单调递减, 上单调递增.

, .

, , ,函数有零点.

实数的取值范围为.

法2:函数的定义域为.

, .

,则.

时, ; 当时, .

所以函数上单调递增, 在上单调递减.

时, 函数取得最大值.

因而函数有零点, 则.

所以实数的取值范围为.

() 要证明当, ,

即证明当, , .

, .

, ;, .

所以函数上单调递减, 上单调递增.

, .

于是,,

, .

, ;, .

所以函数上单调递增, 上单调递减.

, .

于是 ,

显然, 不等式中的等号不能同时成立.

故当, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=是奇函数,且f(2)=.

(1)求实数mn的值;

(2)判断函数f(x)在(-∞,0)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·雅安高一检测)已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2),

(1)求g(x)的解析式及定义域;

(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, . 

(1)求函数的解析式;

(2)现已画出函数轴左侧的图象,如图所示,请补全完整函数的图象;

(3)根据(2)中画出的函数图像,直接写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域是.

(1)判断上的单调性,并证明;

(2)若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点, 的中点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,且,求直线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是数学家伯努瓦·曼德尔布罗在世纪年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图所示的分形规律可得如图乙所示的一个树形图:

若记图乙中第行白圈的个数为,则__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某小区准备将闲置的一直角三角形(其中∠B=,AB=a,BC=a)地块开发成公共绿地,设计时,要求绿地部分有公共绿地走道MN,且两边是两个关于走道MN对称的三角形(△AMN和△A′MN),现考虑方便和绿地最大化原则,要求M点与B点不重合,A′落在边BC上,设∠AMN=θ.

(1)若θ=时,绿地“最美”,求最美绿地的面积;

(2)为方便小区居民的行走,设计时要求将AN,A′N的值设计最短,求此时绿地公共走道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014全国1理21】设函数,曲线在点处的切线方程为

I)求

II)证明:

查看答案和解析>>

同步练习册答案