分析 (1)由已知求出等差数列的公差和首项即可;
(Ⅱ)∵an=2n+1,所以bn=1+(2n+1)•3n,利用分组、错位相减求和即可.
解答 解:设数列{an}的公差为d(d>0),
∵3b1=10a1,∴3(1+3a1)=10a1,∴a1=3
又a2=a1+d=3+d,a7=a1+6d=3(1+2d),∵b2-1=9a2=9(3+d),
由a2,a7,b2-1成等比数列得,9(1+2d)2=9(3+d)2,∵d>0,∴1+2d=3+d,d=2
∴an=3+(n-1)×2=2n+1.
(Ⅱ)∵an=2n+1,所以bn=1+(2n+1)•3n
于是,${s}_{n}=(1+3×3)+(1+5×{3}^{2})+…+(1+(2n+1)×$3n).
令T=3×31+5×32+…+(2n+1)×3n…①,3T=3×32+5×33+…+(2n+1)×3n+1…②
①-②得-2T═3×31+2×32+…+2×3n-(2n+1)×3n+1=9+2×$\frac{{3}^{2}-{3}^{n+1}}{1-3}-(2n+1){3}^{n+1}=-2n×{3}^{n+1}$
∴${T}_{n}=n•{3}^{n+1}$,∴${s}_{n}=n+n•{3}^{n+1}=n(1+{3}^{n+1})$.
点评 本题考查了等差数列的通项公式,分组求和、错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1+i | B. | -3+5i | C. | 3-5i | D. | 1-i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | sinα | B. | -sinα | C. | cosα | D. | -cosα |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com