精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.

1)求直线的普通方程和曲线的直角坐标方程;

2)设曲线与直线的交点为是曲线上的动点,求面积的最大值.

【答案】1;(2

【解析】

1)加减消参即可求得的普通方程;利用正弦和角公式和极坐标和直角坐标转化公式即可求得曲线的直角坐标方程;

2)将直线的参数方程代入曲线的直角方程,利用参数的几何意义求得弦长,再求弦心距,则问题得解.

1)由消去

所以直线的普通方程为

化为直角坐标方程得:

所以曲线的直角坐标方程为.

2)由(1)知,曲线是以为圆心,为半径的圆,

直线过定点在圆内,

将直线的参数方程可化为,代入圆的普通方程,得.

所对应的值分别为,则

所以

又因为圆心到直线的距离

所以△ABQ面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女生

40

40

1)通过估算,试判断男、女哪种性别的学生愿意投入到新生接待工作的概率更大.

2)能否有99%的把握认为,愿意参加新生接待工作与性别有关?

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为.

若点为抛物线上异于原点的任一点,过点作抛物线的切线交轴于点,证明:.

是抛物线上两点,线段的垂直平分线交轴于点 (不与轴平行),且.过轴上一点作直线轴,且被以为直径的圆截得的弦长为定值,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为2

1)求复数

2)设在复平面上对应点分别为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的两顶点分别为为双曲线的一个焦点,为虚轴的一个端点,若在线段上(不含端点)存在两点,使得,则双曲线的渐近线斜率的平方的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},等比数列{bn}满足:a1b1=1,a2b2,2a3b3=1.

(1)求数列{an},{bn}的通项公式;

(2)cnanbn求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着时代的发展和社会的进步,农村淘宝发展十分迅速,促进农产品进城消费品下乡.农产品进城很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x(单位:吨)表示下一个月内市场的需求量,y(单位:元)表示下一个月内经销西凤脐橙的销售利润.

1)将y表示为x的函数;

2)根据频率分布直方图估计小王的网店下一个月销售利润y不少于67000元的概率;

3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率,(例如:若需求量,则取,且的概率等于需求量落入的频率),求小王的网店下一个月销售利润y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥的底面中,平面的中点,且

1)求证:∥平面

2)求二面角的余弦值;

3)在线段内是否存在点,使得?若存在指出点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

1时,求过的切线;

2)讨论函数的单调性;

3的零点个数少于个,求的取值范围.

查看答案和解析>>

同步练习册答案