精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明:

【答案】
(1)解:当a=2时,f(x)=|x+2|+|x+ |,原不等式等价于

解得:x<﹣ 或x∈ ,所以不等式的解集为{x|x<﹣


(2)解:f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |

=


【解析】(1)分类讨论,解不等式,即可得出结论;(2)f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |,利用三角不等式,及基本不等式即可证明结论.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号,以及对不等式的证明的理解,了解不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,F1、F2分别是椭圆的左、右焦点,M为椭圆上除长轴端点外的任意一点,且△MF1F2的周长为4+2
(1)求椭圆C的方程;
(2)过点D(0,﹣2)作直线l与椭圆C交于A、B两点,点N满足 (O为原点),求四边形OANB面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是定义在 上的奇函数,且对任意实数 ,恒有 .当 时, .
(1)求证: 是周期函数;
(2)当 时,求 的解析式;
(3)计算 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈( ),则sinx0的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD-A1B1C1D1,M,N分别为棱C1D1,C1C的中点,有以下四个结论:

直线AMCC1是相交直线;直线AMBN是平行直线;

直线BNMB1是异面直线; 直线MNAC所成的角为60°.

其中正确的结论为___  (:把你认为正确的结论序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中, 底面 ,底面 为直角梯形, 的中点,平面 点.、

(1)求证:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)当 时,求 的单调区间;
(2)设 是曲线 图象上的两个相异的点,若直线 的斜率 恒成立,求实数 的取值范围;
(3)设函数 有两个极值点 ,且 ,若 恒成立,求实数 的取值范围.

查看答案和解析>>

同步练习册答案