精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点上的动点,的中点.

1)请求出点轨迹的直角坐标方程;

2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.

【答案】(1);(2)

【解析】

(1)将曲线的极坐标方程化为直角坐标方程为,可得点满足.利用相关点法即可得出点轨迹的直角坐标方程;

(2)根据已知条件求出直线的参数方程,把直线的参数方程代入,利用根与系数关系求出,由直线的参数方程中的几何意义可将表示,再将代入即可求出的取值范围.

(1)因为的直角坐标方程为

所以点满足

,因为的中点,

所以,所以

所以

整理得的轨迹方程为

(2)因为直线过点

所以直线的参数方程为(为参数,为倾斜角,)

代入,所以

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于为抛物线上一点.

(1),求

(2)已知点,过点作直线分别交曲线,证明:在点运动过程中,直线始终过定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绝大部分人都有患呼吸系统疾病的经历,现在我们调查患呼吸系统疾病是否和所处环境有关.一共调查了人,患有呼吸系统疾病的人,其中人在室外工作,人在室内工作.没有患呼吸系统疾病的人,其中人在室外工作,人在室内工作.

1)现采用分层抽样从室内工作的居民中抽取一个容量为的样本,将该样本看成一个总体,从中随机的抽取两人,求两人都有呼吸系统疾病的概率.

2)你能否在犯错误率不超过的前提下认为感染呼吸系统疾病与工作场所有关;

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆:的离心率为y轴于椭圆相交于AB两点,CD是椭圆上异于AB的任意两点,且直线ACBD相交于点M,直线ADBC相交于点N

求椭圆的方程;

求直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.

(1)求椭圆的方程;

(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,如图4①,②,③,④为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;

(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为计算, 设计了如图所示的程序框图,则空白框中应填入( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知若椭圆)交轴于两点,点是椭圆上异于的任意一点,直线分别交轴于点,则为定值.

1)若将双曲线与椭圆类比,试写出类比得到的命题;

2)判定(1)类比得到命题的真假,请说明理由.

查看答案和解析>>

同步练习册答案