精英家教网 > 高中数学 > 题目详情
17.下面说法中不正确的命题个数为是(  )
?①命题“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”;
?②若“p∨q”为假命题,则p,q均为假命题;
?③“mn>0”是“方程mx2+ny2=1表示椭圆”的充分不必要条件.
A.0B.1C.2D.3

分析 由全称命题的否定为特称命题,即可判断①;
由复合命题的真值表,即可判断②;
由方程mx2+ny2=1表示椭圆?m>0,n>0且m≠n,即可判断③.

解答 解:对于①,命题“?x∈R,x2-x+1≤0”的否定是“$?{x_0}∈R,{x_0}^2-{x_0}+1>0$”,正确;
对于②,若“p∨q”为假命题,则p,q均为假命题,正确;
对于③,方程mx2+ny2=1表示椭圆?m>0,n>0且m≠n,
则“mn>0”是“方程mx2+ny2=1表示椭圆”的必要不充分条件,故③错.
则不正确的命题个数为1.
故选:B.

点评 本题考查命题的真假判断,主要是命题的否定、复合命题的真假判断以及充分必要条件的判断,考查判断能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a,b,c为△ABC三个内角所对的边.
(1)若满足条件asinA=bsinB.求证:△ABC为等腰三角形.
(2)若a+b=ab,边长c=2,角C=$\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD是边长为2的菱形,∠BAD=60°,N是PB的中点,过A、D、N三点的平面交PC于M,E为AD中点.
(Ⅰ)求证:EN∥平面PCD;
(Ⅱ)求证:BC⊥平面PEB;
(Ⅲ)求三棱锥M-PBE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若直线y=kx-1与抛物线y2=4x有且只有一个公共点,则k的值为0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,点P是圆O:x2+y2=4上一点,圆O在点P处的切线为m,PQ垂直x轴于点Q(P、Q不重合),线段PQ的重点为E,点A(-2,0),直线l:x=2与直线m交于点M.
(1)若点P(1,$\sqrt{3}$),求直线m的方程;
(2)当P在圆O上运动时,证明A,E,M三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数g(x)=$\frac{1}{2}$sin(2x+$\frac{2π}{3}$),将其图象向左平移$\frac{π}{4}$个单位,再向上平移$\frac{1}{2}$个单位得到函数f(x)=acos2(x+$\frac{π}{3}$)+b的图象.
(1)求实数a、b的值;
(2)设函数φ(x)=g(x)-$\sqrt{3}$f(x),求函数φ(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点与抛物线C2:y2=2px(p>0)的焦点重合,曲线C1与C2相交于点($\frac{2}{3}$,$\frac{2}{3}$$\sqrt{6}$).
(I)求椭圆C1的方程;
(II)过右焦点F2的直线l(与x轴不重合)与椭圆C1交于A、C两点,线段AC的中点为G,连接OG并延长交椭圆C1于B点(O为坐标原点),求四边形OABC的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的个数是(  )
(1)三点确定一个平面
(2)一条直线和一个点确定一个平面
(3)两条直线确定一个平面
(4)三角形和梯形一定为平面图形.
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案