精英家教网 > 高中数学 > 题目详情
14.如图所示,在Rt△ABC中,AB=3,BC=4,点E、D分别在边AB、AC上,且ED∥BC,AB⊥BC,沿DE折成直二面角A-ED-B,是否存在点E,使AC⊥DB?若存在,求BE的长;若不存在,请说明理由.

分析 由题意,AE⊥平面BEDC,连接EC,交BD于F,利用三角形的相似,射影定理,建立方程,即可得出结论.

解答 解:由题意,AE⊥平面BEDC,
连接EC,交BD于F.
若AC⊥DB,则EC⊥DB.
设BE=x,则$\frac{3-x}{3}$=$\frac{ED}{4}$=$\frac{FC}{EF}$,
∴ED=$\frac{4}{3}$(3-x),FC=$\frac{3}{6-x}$EC,
∴42=FC•EC=$\frac{3}{6-x}$EC2
∴16(6-x)=3(x2+16),
∴3x2+16x-48=0,
∴x=$\frac{4\sqrt{13}-8}{3}$.

点评 本题考查平面与平面垂直,考查线面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知sin(α-π)=$\frac{2}{3}$,且$α∈(-\frac{π}{2},0)$,则tanα=-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设一个圆锥的侧面展开图是半径为$2\sqrt{3}$的半圆,则此圆锥的体积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1内有一点P(1,4),一直线过点P与双曲线相交于P1,P2两点,弦P1P2被点P平分,则直线P1P2的方程为x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴上的一个顶点与两焦点构成正三角形,过椭圆C的焦点作x轴的垂线截椭圆的弦长为3,设A,B分别为椭圆的左右顶点,M为椭圆上异于A,B的任一点.
(1)求椭圆的方程;
(2)若直线MA与直线x=4相交于点P,过点P作直线MB的垂直,垂足为H,求点H的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M(-1,0),F(1,0),动点P满足$\overrightarrow{MP}•\overrightarrow{MF}=2|{\overrightarrow{FP}}|$,过F的直线交P的轨迹C于A,B两点,若AB的垂直平分线经过点Q(0,5),求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A={-1,3},B={2,3},则A∪B={-1,2,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱台ABCD-A1B1C1D1中,D1D⊥ABCD,底面ABCD是平行四边形,AB=AD=2A1B1,∠BAD=60°.
(1)求证:BB1⊥AC.
(2)连结AC,BD,设交点O,连结B1O.设AB=2,D1D=2,求三棱锥B1-ABO外接球的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知三棱锥P-ABC,PA⊥面ABC,AB⊥BC,且PA=AB=BC=2,则三棱锥P-ABC的外接球的表面积为12π.

查看答案和解析>>

同步练习册答案