精英家教网 > 高中数学 > 题目详情
设变量x,y满足的约束条件:
x+y≥2
x-y≤2
0≤y≤3
.则z=x-3y的最小值(  )
A、-4B、-6C、-8D、-10
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可.
解答: 解:由z=x-3y得y=
1
3
x-
z
3

作出不等式组对应的平面区域如图(阴影部分):
平移直线y=
1
3
x-
z
3

由图象可知当直线y=
1
3
x-
z
3
经过点B时,直线y=
1
3
x-
z
3
的截距最大,
此时z最小,
y=3
x+y=2
,解得
x=-1
y=3
,即B(-1,3).
将B(-1,3)代入目标函数z=x-3y,
得z=-1-3×3=-1-9=-10.
∴目标函数z=x-3y的最小值是-10.
故选:D.
点评:本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln
ex
e-x
,若
2014
k-1
f(
ke
2015
)=1007(a+b),则a2+b2的最小值为
 
1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是有y=log2x的反函数,又g(x)=-2x+b,且f(x)与g(x)的交点为M(m,n).
(1)判定g(x)的单调性;
(2)若m=1,定义min(a,b)=
a,(a≤b)
b,(a>b)
,记F(x)=min{f(x),g(x)},求其解析式及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出y=
4
t
-3t的图象,并求出最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(
1
x
-x
x
n展开式中含有常数项,则n可能的取值是(  )
A、8B、7C、6D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x-1)(x>1)的反函数为(  )
A、f-1(x)=ex+1(x>0)
B、f-1(x)=ex+1(x∈R)
C、f-1(x)=ex+1(x∈R)
D、f-1(x)=ex+1(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别是a,b,c,且a=
2
,b=
3
,A=45°,则 B=(  )
A、60°
B、30°
C、60°或120°
D、30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b为正实数,则2a>2b是log2a>log2b的(  )
A、充要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
8
cos
π
8
=
 

查看答案和解析>>

同步练习册答案