精英家教网 > 高中数学 > 题目详情
14.针对时下的网购热,某单位对“喜欢网购与职工性别是否有关”进行了一次调查,其中男职工有60人,女职工人数是男职工人数的$\frac{1}{2}$,喜欢网购的男职工人数是男职工人数的$\frac{1}{6}$,喜欢网购的女职工人数是女职工人数的$\frac{2}{3}$.
(1)根据以上数据完成下面的2×2列联表.
喜欢网购不喜欢网购总计
男职工
女职工
总计
(2)能否在犯错误的概率不超过0.001的前提下认为喜欢网购与职工性别有关系?
参考数据及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (1)本题是一个简单的数字的运算,根据a,b,c,d的已知和未知的结果,做出空格处的结果.
(2)由已知数据可求得观测值,把求得的观测值同临界值进行比较,看能否在犯错误的概率不超过0.001的前提下认为喜欢网购与职工性别有关系.

解答 解:(1)依题意,2×2列联表为:

喜欢网购不喜欢网购总计
男职工105060
女职工201030
总计306090QUOTE
…(6分)
(2)由K2=$\frac{90×(10×10-50×20)^{2}}{60×30×30×60}$=22.5≥10.828,…(10分)
因此,在犯错误的概率不超过0.001的前提下,认为喜欢网购与职工性别有关.…(12分)

点评 本题考查独立性检验的列联表.考查假设性判断,解题的过程比较麻烦,但这种问题的解答原理比较简单,是一个送分题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(x-$\frac{2}{x}$)8的二项展开式中,常数项为1120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x(x2-ax+3).
(Ⅰ)若x=$\frac{1}{3}$是f(x)的极值点,求f(x)在区间[-1,4]上的最大值与最小值;
(Ⅱ)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平行四边形ABCD中,E,F分别是BC,CD的中点,DE交AF于点G,记$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,则$\overrightarrow{AG}$=(  )
A.$\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$B.$\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$C.-$\frac{2}{5}$$\overrightarrow{a}$+$\frac{4}{5}$$\overrightarrow{b}$D.-$\frac{2}{5}$$\overrightarrow{a}$-$\frac{4}{5}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在△ABC中,D为边BC的中点,则下列结论正确的是(  )
A.$\overrightarrow{AB}$+$\overrightarrow{AC}$=$\overrightarrow{AD}$B.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$C.$\overrightarrow{AB}$+$\overrightarrow{DC}$=$\overrightarrow{AD}$D.$\overrightarrow{AB}$-$\overrightarrow{DC}$=$\overrightarrow{BC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校高一年级有200人,其中100人参加数学第二课堂活动.在期末考试中,分别对参加数学第二课堂活动的同学与未参加数学第二课堂活动的同学的数学成绩进行调查.按照学生数学成绩优秀与非优秀人数统计后,构成如下不完整的2×2列联表:
优秀非优秀总计
参加数学第二课堂活动p
未参加数学第二课堂活动q100
总计200
已知p是(1+2x)5展开式中的第三项系数,q是(1+2x)5展开式中的第四项的二项式系数.
(Ⅰ)求p与q的值;
(Ⅱ)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩优秀与参加数学第二课堂活动有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为[-1,5],f(x)的导函数f′(x)的图象如图所示.若f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是{m|m=-1或0≤m≤1或2≤m≤3或m=4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个实数a、b(a≠b)满足aea=beb,命题p:lna+a=lnb+b;命题q:(a+1)(b+1)<0.则下面命题是真命题的是(  )
A.p∨(¬q)B.p∧(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求曲线C上的动点M和直线l上的动点N的距离的最小值;
(2)求过曲线C上某一点与直线l平行的切线被曲线C关于y轴对称的曲线C′所截得的弦AB的长度.

查看答案和解析>>

同步练习册答案