精英家教网 > 高中数学 > 题目详情

【题目】向量,函数

1)求的表达式,并在直角坐标中画出函数在区间上的草图;

2)若方程上有两个根,求的取值范围及的值.

【答案】1,见解析(2

【解析】

1)根据数量积的坐标表示,二倍角公式,辅助角公式即可求出的表达式,再根据五点作图法或者平移法即可作出其在上的草图;

2)依题意知,函数上的图象与直线有两个交点,根据数形结合,即可求出的取值范围及的值.

1)依题知,

将正弦函数的图象向右平移个单位,再将各点的横坐标变为原来的,即可得到的图象,截取的部分即得,如图所示:

2)依题可知,函数上的图象与直线有两个交点,根据数形结合,

可知,,当时,两交点关于直线对称,

所以;当时,两交点关于直线对称,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱侧棱和底面垂直的棱柱中,平面侧面,线段AC、上分别有一点E、F且满足

求证:

求点E到直线的距离;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为支援边远地区教育事业的发展,现有5名师范大学毕业生主动要求赴西部某地区三所不同的学校去支教,每个学校至少去1人,甲、乙不能安排在同一所学校,则不同的安排方法有( )

A.180B.150C.90D.114

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)的离心率为,过椭圆的左、右焦点分别作倾斜角为的直线分别交椭圆于ABCD两点,当时,直线ABCD之间的距离为.

1)求椭圆的标准方程;

2)若AB不与x轴重合,点P在椭圆上,且满足t0.,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线y=fx)在点处的切线与坐标轴围成的三角形的面积;

2)求过点作曲线y=fx)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中为自然对数的底数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若对任意,不等式恒成立,求实数的取值范围;

(Ⅲ)试探究当时,方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1)在矩形ABCD中,AB=5,AD=2,点E在线段AB上,且BE=1,将△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCDE,如图(2).

(1)求证:CE⊥平面A1DE

(2)求证:A1DA1C

(3)线段A1C上是否存在一点F,使得BF∥平面A1DE?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非单调数列{an}是公比为q的等比数列,a1,其前n项和为Sn(n∈N*),且满足S3+a3,S5+a5,S4+a4成等差数列.

(1)求数列{an}的通项公式和前n项和Sn

(2)bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

同步练习册答案