精英家教网 > 高中数学 > 题目详情
已知函数f(x),(x∈D),若同时满足以下条件:
①f(x)在D上单调递减或单调递增
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b],那么称f(x)(x∈D)为闭函数.
(1)求闭函数f(x)=-x3符合条件②的区间[a,b];
(2)判断函数y=2x+lgx是不是闭函数?若是请找出区间[a,b];若不是请说明理由;
(3)若y=k+是闭函数,求实数k的取值范围.
【答案】分析:(1)由y=-x3在R上单减,可得,可求a,b
(2)由函数y=2x+lgx在(0,+∞)单调递增可知,结合对数函数的单调性可判断
(3)易知y=k+在[-2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程x=k+至少有两个不同的解,即方程x2-(2k+1)x+k2-2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围
另解:(1)易知函数f(x)=-x3是减函数,则有,可求
(2)取特值说明即可,不是闭函数.
(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,结合函数的 图象可求
解答:解:(1)∵y=-x3在R上单减,所以区间[a,b]满足
解得a=-1,b=1
(2)∵函数y=2x+lgx在(0,+∞)单调递增
假设存在满足条件的区间[a,b],a<b,则

∴lgx=-x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=-x只有一个交点
故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数
(3)易知y=k+在[-2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组
有解,方程x=k+至少有两个不同的解
即方程x2-(2k+1)x+k2-2=0有两个都不小于k的不根.
,即所求.
另解:(1)易知函数f(x)=-x3是减函数,则有,解得
(2)∵函数y=2x+lgx在(0,+∞)单调递增
假设存在满足条件的区间[a,b],a<b,则

∴lgx=-x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=-x只有一个根
所以,函数y=2x+lgx是不是闭函
(3)由函数f(x)=k+是闭函数,易知函数是增函数,则在区间[a,b]上函数的值域也是[a,b],说明函数f(x)图象与直线y=x有两个不同交点,令k+,则有
k=x-=,(令t=),如图
则直线若有两个交点,则有k
点评:本题主要考查了函数的单调性的综合应用,方程的解与函数的交点的相互转化关系的应用,综合应用了函数的知识及数形结合思想、转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案