精英家教网 > 高中数学 > 题目详情
8、设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:①若α∥β,α∥γ,则β∥γ②若α⊥β,m∥α,则m⊥β③若m⊥α,m∥β,则α⊥β④若m∥n,?n?α,则m∥α其中真命题的序号是(  )
分析:对每一选支进行逐一判定,不正确的只需取出反例,正确的证明一下即可.
解答:解:
对于①利用平面与平面平行的性质定理可证α∥β,α∥γ,则β∥γ,正确
对于②面BD⊥面D1C,A1B1∥面BD,此时A1B1∥面D1C,不正确
对应③∵m∥β∴β内有一直线与m平行,而m⊥α,
根据面面垂直的判定定理可知α⊥β,故正确
对应④m有可能在平面α内,故不正确,
故选D
点评:本题主要考查了平面与平面之间的位置关系,以及空间中直线与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设m,n是不同的直线,是不同的平面,则下列四个命题:①若α∥β,m?α,则m∥β,②若m∥α,n?α,则m∥n,③若α⊥β,m∥α,则m⊥β,④若m⊥α,m∥β,则α⊥β
其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

6、设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)若n∥α,m∥β,α∥β,则n∥m;   (2)若m⊥α,n∥α,则m⊥n
(3)若α⊥γ,β⊥γ,则α∥β;         (4)若α∥β,β∥γ,m⊥α,则m⊥γ
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是不同的直线,α、β、γ是不同的平面,有以下四个命题:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中,假命题是(  )
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

设m、n是不同的直线,α、β是不同的平面,有以下四个命题:
①若m⊥α,n⊥α,则m∥n; 
②若α⊥β,m∥α,则m⊥β;
③若m上α,m⊥n,则n∥α;    
④若n⊥α,n⊥β,则β∥α.
其中,真命题的序号是(  )

查看答案和解析>>

同步练习册答案