精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的焦点在x轴上,一个顶点为,离心率为,过椭圆的右焦点F的直线l与坐标轴不垂直,且交椭圆于AB两点.

求椭圆的方程;

设点C是点A关于x轴的对称点,在x轴上是否存在一个定点N,使得CBN三点共线?若存在,求出定点的坐标;若不存在,说明理由;

,是线段为坐标原点上的一个动点,且,求m的取值范围.

【答案】(1);(2)定点(3)

【解析】

(1)根据椭圆的一个顶点,即b=1,利用离心率求得a和c关系进而求得a,则椭圆的方程可得;(2)设存在N(t,0),使得C、B、N三点共线,则,利用向量共线定理可得t,即可得出.(3)设直线l的方程为y=k(x﹣2)(k≠0),代入椭圆方程,利用韦达定理结合向量的数量积公式,即可求得m的取值范围;

由椭圆的焦点在x轴上,设椭圆C的方程为

椭圆C的一个顶点为,即

,解得:

所以椭圆C的标准方程为

由得,设

设直线l的方程为,代入椭圆方程,消去y可得

点C与点A关于x轴对称,

假设存在,使得C、B、N三点共线,

、B、N三点共线,

存在定点,使得C、B、N三点共线.

解得:

时,符合题意

故m的范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线,过其焦点的直线与抛物线相交于两点,满足.

1)求抛物线的方程;

2)已知点的坐标为,记直线的斜率分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域,部分对应值如表,的导函数的图象如图所示,下列关于函数的结论正确的是(

0

4

5

1

2

2

1

A.函数的极大值点有2

B.函数上是减函数

C.时,的最大值是2,那么的最大值为4

D.时,函数4个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:过点,且离心率为

(Ⅰ)求椭圆C的方程;

(Ⅱ)若过原点的直线与椭圆C交于P、Q两点,且在直线上存在点M,使得为等边三角形,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

1)讨论函数的单调性;

(2)当时,设的两个极值点,()恰为的零点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为

1)问该厂至少有多少名维修工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不小于

2)已知1名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,能使该厂产生5万元的利润,否则将不产生利润.若该厂现有2名工人,求该厂每月获利的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性

(2)当时,,对任意,都有恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,是曲线段是参数,)的左、右端点,上异于的动点,过点作直线的垂线,垂足为.

1)建立适当的极坐标系,写出点轨迹的极坐标方程;

2)求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 为圆的直径,点 在圆上, ,矩形和圆所在的平面互相垂直,已知

(Ⅰ)求证:平面平面

(Ⅱ)求直线与平面所成角的大小;

(Ⅲ)当的长为何值时,二面角的大小为

查看答案和解析>>

同步练习册答案
鍏� 闂�