精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\sqrt{3}sinxcosx-{cos^2}x$.
(1)求f(x)的最小正周期;
(2)若f(x)=-1,求$cos(\frac{2π}{3}-2x)$的值.

分析 (1)利用二倍角公式和将次公式化简得f(x)=sin(2x-$\frac{π}{6}$)-$\frac{1}{2}$,代入周期公式求出;
(2)由f(x)=-1得sin(2x-$\frac{π}{6}$)=$-\frac{1}{2}$.而$\frac{2π}{3}-2x$=$\frac{π}{2}$-(2x-$\frac{π}{6}$),故用诱导公式可求出$cos(\frac{2π}{3}-2x)$.

解答 解:(1)$f(x)=\frac{{\sqrt{3}}}{2}sin2x-\frac{1+cos2x}{2}$=$\frac{{\sqrt{3}}}{2}sin2x-\frac{cos2x}{2}-\frac{1}{2}=sin(2x-\frac{π}{6})-\frac{1}{2}$,
∴f(x)的最小正周期为$T=\frac{2π}{2}=π$.
(2)∵f(x)=-1,
∴$sin(2x-\frac{π}{6})-\frac{1}{2}=-1$,即$sin(2x-\frac{π}{6})=-\frac{1}{2}$,
∴$cos({\frac{2π}{3}-2x})=cos({\frac{π}{2}-(2x-\frac{π}{6})})=sin(2x-\frac{π}{6})=-\frac{1}{2}$.

点评 本题考查了三角函数化简及诱导公式应用,发现$\frac{2π}{3}-2x$与2x-$\frac{π}{6}$的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3+ax+$\frac{1}{4}$.当a=-$\frac{3}{4}$时,求过点(0,0)与曲线y=f(x)相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四边形ABCD为圆O的内接正方形,且AB=2,EF为圆O的一条直径,M为正方形ABCD边界上一动点,∠EMF=α,α满足sin2α+cos2α=$\frac{1}{4}$,α∈($\frac{π}{2}$,π).
(1)求α的大小;
(2)求△MEF的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求B1E与平面AEC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知在等差数列{an}中,a1=-1,公差d=2,an-1=15,则n的值为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,正三棱柱ABC-A1B1C1的底面边长与侧棱长均为2,D为AC中点.
(1)求证:B1C∥平面A1DB;
(2)求直线BD与平面A1BC1所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列四个命题,其中正确命题的序号是(  )
①已知f(x)=x2+bx+c是偶函数,则b=0
②若函数f(x)的值域为[0,2],则函数f(2x)的值域为[0,2]
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④已知集合P={a,b},Q={-1,0,1}则映射f:P→Q中满足f(b)=0的映射共有3个.
⑤如果二次函数y=3x2+2(a-1)x+b在区间(-∞,1]上是减函数,那么a的取值范围是a≤-2.
A.①②⑤B.①②④⑤C.①②③⑤D.①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C的中心O为坐标原点,右焦点为F(1,0),A、B分别是椭圆C的左右顶点,P是椭圆C上的动点.
(Ⅰ)若△PAB面积的最大值为$\sqrt{2}$,求椭圆C的方程;
(Ⅱ)过右焦点F做长轴AB的垂线,交椭圆C于M、N两点,若|MN|=3,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=2x2-alnx在[1,+∞)内存在单调减区间,则实数a的取值范围是(4,+∞).

查看答案和解析>>

同步练习册答案