精英家教网 > 高中数学 > 题目详情

【题目】上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如下表:

黄赤交角

正切值

0.439

0.444

0.450

0.455

0.461

年代

公元元年

公元前2000

公元前4000

公元前6000

公元前8000

根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是( )

A.公元前2000年到公元元年B.公元前4000年到公元前2000

C.公元前6000年到公元前4000D.早于公元前6000

【答案】D

【解析】

先理解题意,然后根据题意建立平面几何图形,在利用三角函数的知识计算出冬至日光与春秋分日光的夹角,即黄赤交角,即可得到正确选项.

解:由题意,可设冬至日光与垂直线夹角为,春秋分日光与垂直线夹角为

即为冬至日光与春秋分日光的夹角,即黄赤交角,

将图3近似画出如下平面几何图形:

估计该骨笛的大致年代早于公元前6000年.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

参加占户比

45

45

10

脱贫率

96

96

90

那么2019年的年脱贫率是实施精准扶贫政策前的年均脱贫率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数处的切线过点,求的解析式;

2)若函数上单调递减,求实数取值范围;

3)若函数上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,椭圆的右焦点为,离心率为,过点的直线相交于两点,点为线段的中点.

1)当的倾斜角为时,求直线的方程;

2)试探究在轴上是否存在定点,使得为定值?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆P恒过定点,且与直线相切.

(Ⅰ)求动圆P圆心的轨迹M的方程;

(Ⅱ)正方形ABCD中,一条边AB在直线y=x+4上,另外两点C、D在轨迹M上,求正方形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

设函数fx=x+ax2+blnx,曲线y=fx)过P1,0),且在P点处的切斜线率为2.

I)求ab的值;

II)证明:f(x)≤2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是坐标原点,过的直线分别交抛物线两点,直线与过点平行于轴的直线相交于点,过点与此抛物线相切的直线与直线相交于点.则( )

A. B. C. D.

查看答案和解析>>

同步练习册答案