精英家教网 > 高中数学 > 题目详情

【题目】若直线轴,轴的交点分别为,圆以线段为直径.

(Ⅰ)求圆的标准方程;

(Ⅱ)若直线过点,与圆交于点,且,求直线的方程.

【答案】(Ⅰ);(Ⅱ).

【解析】

(1)本题首先根据直线方程确定两点坐标,然后根据线段为直径确定圆心与半径,即可得出圆的标准方程;

(2)首先可根据题意得出圆心到直线的距离为,然后根据直线的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果。

(1)令方程中的,得,令,得.

所以点的坐标分别为.

所以圆的圆心是,半径是

所以圆的标准方程为.

(2)因为,圆的半径为,所以圆心到直线的距离为.

若直线的斜率不存在,直线的方程为,符合题意.

若直线的斜率存在,设其直线方程为,即.

的圆心到直线的距离,解得.

则直线的方程为,即.

综上,直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB﹣bcosA= c.
(Ⅰ)求 的值;
(Ⅱ)若A=60°,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,上异于的点.

(1)证明:平面平面

(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足;② ,且时,都有;③ ,且时,都有,则称为“偏对称函数”.现给出四个函数:;② ; ③;④.则其中是“偏对称函数”的函数序号为 _______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月11时的平均气温低于乙地该月11时的平均气温
②甲地该月11时的平均气温高于乙地该月11时的平均气温
③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差
④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差
其中根据茎叶图能得到的正确结论的编号为(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为比较甲、乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据(单位:℃)制成如图所示的茎叶图,考虑以下结论:
①甲地该月11时的平均气温低于乙地该月11时的平均气温
②甲地该月11时的平均气温高于乙地该月11时的平均气温
③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差
④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差
其中根据茎叶图能得到的正确结论的编号为(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:

岗位

岗位

总计

女生

12

8

20

男生

24

56

80

总计

36

64

100

(1)根据以上数据判断是有的把握认为招聘的两个岗位与性别有关?

(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.

参考公式:,其中.

参考数据:

0.050

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现需要设计一个仓库,由上下两部分组成,上部的形状是正四棱锥,下部的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.

(1)若,则仓库的容积是多少?

(2)若正四棱锥的侧棱长为,当为多少时,下部的正四棱柱侧面积最大,最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b=acosC+3bsin(B+C).
(1)若 ,求角A;
(2)在(1)的条件下,若△ABC的面积为 ,求a的值.

查看答案和解析>>

同步练习册答案