【题目】设抛物线:的焦点为,直线与交于,两点,的面积为.
(1)求的方程;
(2)若,是上的两个动点,,试问:是否存在定点,使得?若存在,求的坐标,若不存在,请说明理由.
【答案】(1);
(2)见解析.
【解析】
(1)把代入抛物线方程可得:,解得.根据的面积为列方程,解得,问题得解.
(2)假设存在定点S,使得.设,线段的中点为.由,可得,化为:.当轴时满足题意,因此点S必然在x轴上.设直线的方程为:.与抛物线方程联立可得:.根据根与系数的关系、中点坐标公式可得.可得线段的垂直平分线方程,问题得解.
解:(1)把代入抛物线方程,可得:,解得.
∵的面积为.
∴,解得.
∴E的方程为:.
(2)假设存在定点S,使得.
设,线段的中点为.
由抛物线定义可得:,
∵,
∴,整理得:.∴.
当轴时满足题意,因此点S必然在x轴上.
设直线的方程为:.
联立,化为:.
∴,
∴.
线段的垂直平分线方程为:,
令,可得:.
∴存在定点,使得.
科目:高中数学 来源: 题型:
【题目】下列命题中的真命题是( )
A. 若,则向量与的夹角为钝角
B. 若,则
C. 若命题“是真命题”,则命题“是真命题”
D. 命题“,”的否定是“,”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有,两个分厂生产某种产品,规定该产品的某项质量指标值不低于130的为优质品.分别从,两厂中各随机抽取100件产品统计其质量指标值,得到如图频率分布直方图:
(1)根据频率分布直方图,分别求出分厂的质量指标值的众数和中位数的估计值;
(2)填写列联表,并根据列联表判断是否有的把握认为这两个分厂的产品质量有差异?
优质品 | 非优质品 | 合计 | |
合计 |
(3)(i)从分厂所抽取的100件产品中,利用分层抽样的方法抽取10件产品,再从这10件产品中随机抽取2件,已知抽到一件产品是优质品的条件下,求抽取的两件产品都是优质品的概率;
(ii)将频率视为概率,从分厂中随机抽取10件该产品,记抽到优质品的件数为,求的数学期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某食品公司研发生产一种新的零售食品,从产品中抽取200件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下的频率分布直方图:
(1)求直方图中的值;
(2)由频率分布直方图可认为,这种产品的质量指标值服从正态分布,试计算这批产品中质量指标值落在上的件数;
(3)设产品的生产成本为,质量指标值为,生产成本与质量指标值满足函数关系式,假设同组中的每个数据用该组数据区间的右端点代替,试计算生产该食品的平均成本.参考数据:若,则,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定点,常数,动点,设,,且.
(1)求动点的轨迹方程;
(2)设直线:与点的轨迹交于,两点,问是否存在实数使得?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com