精英家教网 > 高中数学 > 题目详情

【题目】某校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一,高二,高三各年级抽取的人数分别为(
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30

【答案】D
【解析】解:根据题意得,用分层抽样在各层中的抽样比为 = , 则在高一年级抽取的人数是900× =45人,高二年级抽取的人数是1200× =60人,
高三年级抽取的人数是600× =30人,
那么高一、高二、高三各年级抽取的人数分别为45,60,30.
故选D.
根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出在各年级中抽取的人数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0 ) 经过点 P(1, ),离心率 e=
(Ⅰ)求椭圆C的标准方程.
(Ⅱ)设过点E(0,﹣2 ) 的直线l 与C相交于P,Q两点,求△OPQ 面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣
(1)讨论f(x)的单调性.
(2)若f(x)在区间(1,2)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{bn}满足bn=| |,其中a1=2,an+1=
(1)求b1 , b2 , b3 , 并猜想bn的表达式(不必写出证明过程);
(2)由(1)写出数列{bn}的前n项和Sn , 并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是平行四边形ABCD所在平面外一点,E是PD的中点.
(1)求证:PB∥平面EAC;
(2)若M是CD上异于C、D的点.连结PM交CE于G,连结BM交AC于H,求证:GH∥PB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将A、B两枚骰子各抛掷一次,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)两枚骰子点数之和是3的倍数的结果有多少种?
(3)两枚骰子点数之和是3的倍数的概率为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(2x﹣ )的图象,可以将函数y=sin2x的图象(
A.向右平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向左平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆O1和圆O2的极坐标方程分别为ρ=2,
(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(2)求经过两圆交点的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直线l1:kx+y=0和直线l2:kx+y+b=0(b>0),射线OC的一个法向量为 =(﹣k,1),点O为坐标原点,且k≥0,直线l1和l2之间的距离为2,点A、B分别是直线l1、l2上的动点,P(4,2),PM⊥l1于点M,PN⊥OC于点N;

(1)若k=1,求|OM|+|ON|的值;
(2)若| |=8,求 的最大值;
(3)若k=0,AB⊥l2 , 且Q(﹣4,﹣4),试求|PA|+|AB|+|BQ|的最小值.

查看答案和解析>>

同步练习册答案