精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面是菱形的四棱锥中,,点上,且

1)证明:

2)在棱上是否存在一点,使三棱锥是正三棱锥?证明你的结论.

3)求以为棱,为面的二面角的大小.

【答案】1)证明详见解析;(2)不存在点F,证明详见解析;(3

【解析】

1)由已知求解三角形可知,再由线面垂直判断定理证明;

2)若三棱锥是正三棱锥,那么点在底面的射影应是正三角形的中心,

利用(1)的结论可知平面,逐步可推得矛盾;

(3)作于点,连接,可证明为面的二面角的平面角,再求解交的大小.

证明:底面是菱形,

中,由,则

同理

平面

2)在棱上不存在点,使三棱锥是正三棱锥,

假设在棱上存在点,使三棱锥是正三棱锥,过点作底面的垂线,垂足为,则的中心,

在平面内,过

平面平面

这样过平面外一点,有两条直线与平面垂足,这与应过平面外有一条直线与平面垂直相矛盾,故假设不成立,

即在棱上不存在点,使三棱锥是正三棱锥.

3)作

平面平面

于点,连接

平面

为面的二面角的平面角,设为

,即

所以为面的二面角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等腰直角三角形中,,点是边上异于的一点,光线从点出发,经反射后又回到原点,光线经过的重心.

1)建立适当的坐标系,请求的重心的坐标;

2)求点的坐标;

3)求的周长及面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆 的左焦点为,右顶点为,上顶点为

1)已知椭圆的离心率为,线段中点的横坐标为,求椭圆的标准方程;

2)已知△外接圆的圆心在直线上,求椭圆的离心率的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某地区乡居民人民币储蓄存款(年底余额)如下表:

年份

2012

2013

2014

2015

2016

2017

时间代号x

1

2

3

4

5

6

储蓄存款y(千亿元)

3.5

5

6

7

8

9.5

1)求关于x的回归方程,并预测该地区2019年的人民币储蓄存款(用最简分数作答).

2)在含有一个解释变量的线性模型中,恰好等于相关系数r的平方,当时,认为线性冋归模型是有效的,请计算并且评价模型的拟合效果(计算结果精确到0.001.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题(1条斜线段长相等,则他们在平面内的射影长也相等;(2)直线不在平面内,他们在平面内的射影是两条平行直线,则;(3)与同一平面所成的角相等的两条直线平行;(4)一条直线与一个平面所成的角是,那么它与平面内任何其他直线所成的角都不小于;其中正确的命题序号是____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】再直角坐标系中,定义两点间的直角距离,现有下列命题:

①若轴上两点,则

②已知,则为定值

③原点到直线上任一点的直角距离的最小值为

④设,若点是在过的直线上,且点到点直角距离之和等于,那么满足条件的点只有.

其中的真命题是____________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个创业青年租用一块边长为4百米的等边田地如图养蜂、产蜜与售蜜,田地内拟修建笔直小路MNAP,其中MN分别为ACBC的中点,点PCN上,规划在小路MNAP的交点O(OMN不重合处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区,AN为出入口小路的宽度不计为节约资金,小路MO段与OP段建便道,供蜂源植物培育之用,费用忽略不计为车辆安全出入,小路AO段的建造费用为每百米5万元,小路ON段的建造费用为每百米4万元.

(Ⅰ)若拟修的小路AO段长为百米,求小路ON段的建造费用;

(Ⅱ)设, 的值,使得小路AO段与ON段的建造总费用最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,给出下列结论:

上是减函数;

上的最小值为

上至少有两个零点.

其中正确结论的序号为_________(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为F,短轴的两个端点分别为AB,且为等边三角形.

1)求椭圆C的方程;

2)如图,点M在椭圆C上且位于第一象限内,它关于坐标原点O的对称点为N;过点Mx轴的垂线,垂足为H,直线与椭圆C交于另一点J,若,试求以线段为直径的圆的方程;

3)已知是过点A的两条互相垂直的直线,直线与圆相交于两点,直线与椭圆C交于另一点R;求面积取最大值时,直线的方程.

查看答案和解析>>

同步练习册答案