精英家教网 > 高中数学 > 题目详情

不等式ln2x+lnx<0的解集是


  1. A.
    (e-1,1)
  2. B.
    (1,e)
  3. C.
    (0,1)
  4. D.
    (0,e-1
A
本题考查二次不等式的解法和对数函数的单调性.
,则原不等式可化为,解得,解得故选A
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2+3x)-
3
2
x2

(I)求f(x)在[0,1]上的最大值;
(II)若对任意的实数x∈[
1
6
1
2
]
,不等式|a-lnx|+ln[f'(x)+3x]>0恒成立,求实数a的取值范围;
(III)若关于x的方程f(x)=-2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx+
1-x2
x

(1)求函数f(x)的单调区间;
(2)利用1)的结论求解不等式2|lnx|≤(1+
1
x
)
•|x-1|.并利用不等式结论比较ln2(1+x)与
x2
1+x
的大小.
(3)若不等式(n+a)ln(1+
1
n
)≤1
对任意n∈N*都成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是直线l上不同的三点,O是l外一点,向量
OA
OB
OC
 满足:
OA
-(
3
2
x2+1)
OB
-[ln(2+3x)-y]
OC
=
0
,记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若关于x的方程f(x)=2x+b在(0,1]上恰有两个不同的实根,求实数b的取值范围;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|-ln[f′(x)-3x]>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•梅州一模)下列命题中假命题是(  )

查看答案和解析>>

同步练习册答案